«Викинги» на Марсе - Кирилл Кондратьев
- Категория: Научные и научно-популярные книги / Прочая научная литература
- Название: «Викинги» на Марсе
- Автор: Кирилл Кондратьев
- Возрастные ограничения: Внимание (18+) книга может содержать контент только для совершеннолетних
Шрифт:
Интервал:
Закладка:
К. Я. Кондратьев
«ВИКИНГИ» НА МАРСЕ
Введение
Опыт исследований планет показал, что наиболее перспективным является комплексное применение наземных средств наблюдений, а также автоматических межпланетных станций (АМС), состоящих из орбитального аппарата (ОА), который выводится на орбиту искусственного спутника планеты, и спускаемого аппарата (СА), используемого для вертикального зондирования при спуске СА через атмосферу и прямых измерений параметров атмосферы и грунта после посадки СА. Несомненный приоритет принадлежит прямым измерениям при помощи аппаратуры, устанавливаемой на СА, что было блестяще продемонстрировано еще данными АМС «Венера-4». Успешный запуск АМС «Венера-9» и «Венера-10» и связанный с ним вывод на орбиты двух искусственных спутников Венеры, а также посадка двух СА явились первым примером комплексных исследований Венеры при помощи летательных аппаратов, функционирующих в режиме искусственных спутников и спускаемых аппаратов, совершивших посадку на поверхности планеты [7, 10]. Осуществление программы АМС «Викинг-1» и «Викинг-2» явилось продолжением аналогичного направления исследований с целью получения новых данных об атмосфере и поверхности Марса.
Получение обширной новой информации о свойствах атмосфер и поверхностей Венеры и Марса открывает широкие перспективы с точки зрения решения задач сравнительной метеорологии планет [8, 9]. В этой связи сопоставление данных по Венере и Марсу является особенно интересным. Это касается, в частности, данных о составе атмосфер.
Составленная Коннеллом [73] табл. 1 характеризует современные данные о составе атмосферы Марса и надоблачной атмосферы Венеры, для которых характерны преобладание углекислого газа и его фотодиссоциация (в атмосфере Марса — вплоть до поверхности планеты, а на Венере — выше уровня верхней границы облаков). Заметим при этом, что, хотя CO2 пока еще не был обнаружен, его присутствие является очень вероятным.
Таблица 1 Отношения смеси различных компонент атмосфер Марса и ВенерыПри диссоциации СО2 на СО и О2 отношение концентрации этих двух компонент должно быть равно двум. Фактически оно составляет около 0,5 на Марсе (это можно объяснить избытком О2, возникающим в результате фотолиза водяного пара, который сопровождается диссипацией атомарного водорода) и превосходит 50 на Венере. Последнее требует присутствия на Венере источников молекулярного кислорода.
На обеих планетах наиболее вероятными реакциями образования кислорода являются:
O+O+M → O2+M, OH+O → H+O2,тогда как сток кислорода определяется фотодиссоциацией
O2+hν → 20.Помимо указанных, на Венере возможны еще и две следующие реакции, продуцирующие кислород:
Сl+О3 → СlО+О2, СlО + О → Сl+О2.Интересно, что это именно те реакции, которые привлекли за последнее время большое внимание в связи с проблемой антропогенных воздействий на слой земного атмосферного озона. Малое содержание СО и О2 в атмосферах Марса и Венеры составляет до сих пор не решенную проблему.
Основной для Марса и Венеры является проблема стабильности углекислотной атмосферы. Преобладающее мнение состоит в том что рекомбинация СО2 катализируется нечетным водородом НОх = Н + ОН + НО2+Н2О2. При этом главной является реакция
CO+OH → CO2+H.Каталитический цикл завершается восстановлением гидроксила в результате двух реакций:
Н+О2+М → HO2+M. HO2+O → OH+O2Достаточно надежные выводы по рассматриваемому вопросу затрудняет отсутствие адекватных данных о скоростях реакций.
Главным источником молекулярного водорода на обеих планетах является, по-видимому, реакция
Н+HO2 → H2+О2.Важным фактором устойчивости состава атмосфер служат каталитические эффекты химически активных радикалов, имеющих очень малую концентрацию. В верхней атмосфере Марса для поддержания малых отношений смеси О и СО должен существовать быстрый перенос продуктов диссоциации СО2. Для этого необходим коэффициент вертикальной турбулентной диффузии порядка 108 см2/с. Аналогичные условия могут преобладать и на Венере. Эти предположения приводят, однако, к значениям концентрации О, которые находятся в противоречии с ионосферными данными, а, возможно, — и результатами измерений свечения верхней атмосферы, хотя согласуются с потоком диссипирующих атомов водорода.
Альтернативным является предположение, что верхняя атмосфера состоит главным образом из атомов кислорода, которое требует разработки модели взаимодействия с солнечным ветром для обеспечения согласия с ионосферными данными и выявления процесса, обусловливающего большую нетепловую диссипацию атомов водорода. Такого рода предположение можно согласовать с данными по свечению верхней атмосферы. Для обеих планет остается нерешенной проблема теплового баланса термосфер.
Важные результаты в этом направлении получены М. Н. Изаковым и С. К. Морозовым [3, 4]. На основе численного интегрирования системы гидродинамических уравнений с учетом источника тепла за счет поглощения солнечной ультрафиолетовой радиации и стоков тепла, обусловленных инфракрасным излучением атмосферы и отводом тепла теплопроводностью в нижние слои атмосферы, в работе [4] построена модель суточных вариаций температуры, плотности и ветров в экваториальной зоне Марса в период равноденствия.
Основным упрощением модели является рассмотрение двухмерной термосферы лишь в экваториальной плоскости при пренебрежении меридиональным растеканием. Поскольку рассматривается сравнительно тонкий слой атмосферы (75–200 км), для этого слоя приняты постоянные значения ускорения силы тяжести, теплоемкости, теплопроводности и вязкости, взятые для высоты, соответствующей середине слоя. Предполагается, что термосфера состоит из чистого углекислого газа, но получены также оценки с учетом присутствия 25% аргона.
Вычисления показали, что марсианская мезопауза располагается на высотах 90–100 км, где находится максимум стока тепла за счет радиационного выхолаживания и температура составляет около 150 К. Вертикальный профиль температуры становится примерно изотермическим на высотах более 170 км на дневной и 140 км — ночной стороне планеты. На высоте 200 км плотность изменяется в суточном ходе в 5 раз, а температура — от 280 до 430 К. Последнее хорошо соответствует наблюдаемой температуре около 340 К при той же умеренно высокой солнечной активности, рассмотренной в расчетах.
При отсутствии горизонтального переноса нагревание атмосферы происходит от восхода до захода Солнца, тогда как ветры несколько уменьшают амплитуду солнечно обусловленных вариаций температуры и сдвигают как максимум, так и минимум на более раннее время. Уменьшение амплитуды суточного хода температуры (примерно в 1,5 раза) вызывают и вертикальные движения, что, по-видимому, обусловлено влиянием адиабатического нагревания и охлаждения. Для поля ветра характерно наличие ночью горизонтальной составляющей (порядка 100 м/с), направленной в основном в сторону вращения планеты, а днем (при скорости до 150 м/с) — в противоположную сторону. Учет наличия аргона привел к изменению температуры, достигающей 20 К.
Выше упомянуты лишь некоторые аспекты исследований состава и физики верхних атмосфер Венеры и Марса, выявляющие необходимость дальнейшего изучения состава и строения атмосфер при помощи наиболее надежных средств прямых измерений. Обратимся теперь к детальному обсуждению предварительных результатов, полученных при помощи АМС «Викинг-1, -2».
Осуществлению двух миссий по программе АМС «Викинг» целью которой были исследования атмосферы и поверхности Марса путем вывода двух орбитальных аппаратов на орбиты искусственных спутников Марса (ИСМ) и посадка двух спускаемых аппаратов (СА) на поверхность планеты, предшествовали длительные поиски наиболее подходящих районов посадки.
1. Поиски мест посадки
Поиски мест посадки для АМС «Викинг-1, -2» были тесно связаны с общей проблемой топографии поверхности Марса. Билле и Феррари [19] на основе использования данных радиорефракционных, наземных радарных, спектральных и оптических измерений, а также применения методики Фурье-анализа (учтены гармоники вплоть до двенадцатой) определили основные параметры глобальной топографии Марса. Согласно [19], средний радиус планеты составляет 3389,91 ±0,009 км, а средняя плотность равна 3,9332±0,0018 г/см3. Центр фигуры Марса смещен относительно центра масс на 2,92±0,25 км. Топографическая сплющенность составляет (—3,994±0,077) ·10-3 и равна сплющенности, обусловленной гравитационными факторами и вращением планеты, если принять угловую скорость вращения 77 580 с (21 ч 33 мин), которая сильно отличается от наблюдаемой угловой скорости, что свидетельствует о значительном нарушении гидростатического равновесия. Этот факт побуждает выразить сомнения относительно надежности всех полученных ранее оценок момента инерции Марса, поскольку они основаны на использовании уравнения Дарвина—Радау, предполагающего гидростатическое равновесие.