Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Радиотехника » Радиоэлектроника-с компьютером и паяльником - Генрих Кардашев

Радиоэлектроника-с компьютером и паяльником - Генрих Кардашев

Читать онлайн Радиоэлектроника-с компьютером и паяльником - Генрих Кардашев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 ... 62
Перейти на страницу:

Диод, включенный на прямое напряжение, называют прямосмещенным, или открытым, а на обратное — обратносмещенным, или запертым.

По назначению различают диоды выпрямительные (для выпрямительных устройств), универсальные (для детекторов различного типа) и импульсные (для импульсных устройств).

В зависимости от использованного полупроводникового материала различают диоды германиевые, кремниевые и арсенид-галиевые. Германиевые диоды применяют в основном для детектирования слабых высокочастотных сигналов, а для выпрямителей используют кремниевые диоды.

«Экзотические» типы диодов

В большом семействе диодов, помимо рассмотренных выше «обычных», с простым р-n переходом, встречаются и своеобразные устройства с более сложными характеристиками. Ряд из них традиционно называют по фамилиям тех ученых, которыми они были разработаны.

Диоды Ганна представляют собой полупроводниковые приборы, имеющие сложную структуру зоны проводимости (из арсенида галлия с электронной электропроводностью), работающие на основе открытого в 1963 г. американским физиком Дж. Б. Ганном эффекта, заключающегося в возникновении автоколебаний тока в подобных системах. Колебания возникают в определенном интервале прямых напряжений на диоде на падающем участке ВАХ, имеющей N-образный характер. Используются в СВЧ-генераторах.

Диоды Есаки, или туннельные диоды, основаны на квантово-механическом туннельном эффекте просачивания носителей заряда сквозь потенциальный барьер. Эффект был открыт японским физиком Есаки в 1958 г. ВАХ диода также имеет N-образный характер, поэтому их используют как генераторные, а также в качестве усилительных и переключательных.

Диоды Зенера, стабилитроны или опорные диоды — кремниевые диоды, работающие на обратной ветви ВАХ. В прямом направлении зенеровские диоды ведут себя как «обычные». Работа же при обратном смещении имеет следующую специфику: до некоторого порогового напряжения диод, как обычно, заперт, а при большем обратном напряжении он пробивается. Но это не беда, как для «обычного» диода, в том и заключается «фокус», что пробой в зенеровском диоде носит обратимый характер. Этот-то участок его ВАХ и используется для стабилизации напряжения и включается он «шиворот-навыворот». Характеристиками данного диода служат напряжение пробоя, составляющее от 2,4 до 91 В, и рабочий ток (от 3,9 до 320 мА).

Диоды Шоттки имеют структуру металл-полупроводник, позволяющую получить высокое быстродействие при переключениях напряжения. Очевидно, на особенность поведения этого контакта впервые обратил внимание еще в 1922 г. сотрудник Нижегородской радиолабаратории О. В. Лосев, систематическое же исследование провел В. Шоттки, именем которого и были названы подобные полупроводниковые приборы. Обычно диоды Шоттки изготавливают на основе кристаллов кремния или арсенида галлия. Они широко используются в СВЧ-технике связи и как составной элемент интегральных логических микросхем.

Пин-диоды, или p-i-n-диоды, выполняют в виде многослойной структуры, в которой между р и n областями полупроводника образуется слой с высокой собственной электропроводностью, называемый i-слоем. В режиме переключения проводимость этого слоя меняется на четыре порядка, что позволяет использовать пин-диоды, например, как быстродействующие, переключательные СВЧ-диоды.

Варикапы (от англ. varyable — переменный и capacity — емкость) — диоды, у которых используется барьерная емкость запертого р-n перехода, зависящая от величины приложенного к диоду обратного напряжения. Если рассматривать диод как своеобразный конденсатор, можно обнаружить, что толщина потенциального барьера р-n перехода будет тем больше, чем больше (по модулю) обратное напряжение. Его увеличение как бы раздвигает обкладки конденсатора, что приводит к естественному уменьшению емкости. Существование барьерной емкости обычно ограничивает быстродействие диодов и их частотные характеристики, в варикапах же «то, что немцу плохо…», наоборот, работает на пользу. При прямых напряжениях эта емкость шунтируется малым сопротивлением и снижается добротность. Основными характеристиками варикапов служат: номинальная, минимальная и максимальная емкости; максимально допустимое напряжение и мощность. Варикапы применяют для электронной настройки колебательных контуров.

Поскольку полупроводниковые материалы и структуры из них весьма разнообразны, то и приборов на их основе создано, помимо перечисленных, и будет еще создаваться очень много. Однако, прервем на этом наш обзор, отнеся лишь рассмотрение фото- и светодиодов, в раздел оптоэлектронных компонентов.

Тиристоры

Развитие силовой полупроводниковой электронной техники шло по пути вытеснения электровакуумных и газоразрядных приборов из выпрямителей и преобразователей.

Тиристоры — это обширный класс полупроводниковых приборов, используемых для выпрямления и электронного переключения. Они являются полупроводниковыми устройствами с двумя устойчивыми состояниями, имеющими три или более р-n переходов. Поскольку в качестве полупроводника в тиристорах используется кремний, то в отечественной литературе их также называют кремниевыми управляемыми вентилями.

Тиристоры широко используются для регулирования мощности постоянного и переменного тока в нагрузке за счет ее включения и выключения. Тиристоры были изобретены примерно через десять пет после изобретения биполярного транзистора, который имеет трехслойную структуру (р-n-р или n-р-n). Простейший тиристор имеет четырехслойную структуру (р-n-р-n). На первый взгляд может показаться, что здесь нет ничего нового: просто два диода (р-n) перехода, соединенных последовательно. Однако это совсем не так.

Соединив два диода последовательно, получим такую цепь: проводник (анод) — р слой — n слой — проводник — р слой — n слой — проводник (катод). Отличие заключается в том, что в такой неправильной модели в средней части структуры область n-р перехода заменяется проводником, и… «вместе с водой выплескивается ребенок». Именно эта обратно смещенная область разделяет всю структуру и играет поэтому роль первой скрипки. При подаче на такую структуру напряжения — плюс к аноду, минус — к катоду, два крайних р-n перехода будут открыты (как прямо включенные диоды), а средний n-р переход будет закрыт (обратно смещенный диод), и вся структура окажется запертой (сквозной ток будет близок к нулю). Если напряжение на этом переходе превысит некоторый предел — напряжения включения — Uвкл, то структура как бы открывается. Можно также дополнительно управлять этим процессом, сделав дополнительный вывод (управляющий электрод) от срединной области р и задавая определенный ток управления Iynp.

Тиристоры, имеющие два вывода, т. е. диодные тиристоры называют динистороми, а триодные — тринисторами. Вообще же, для образования названия этого класса полупроводниковых приборов — тиристоры — был использован смешанный способ аббревиации путем сложения греческого тира (thyra — дверь) и части слова резистор (или транзистор). Роль открытой или запертой «двери» играет вышеупомянутая область n-р перехода, а роль «ключа» к ней — напряжение для диодной структуры и управляющий электрод — для триодной (рис. 13).

Рис. 13. Тиристоры:

а — внешний вид; б — УГО и компоненты EWB

Правда, введение этих красочных метафор в электронику было выполнено ранее для газоразрядных приборов с управляющей сеткой — тиратронов, вытесненных тиристорами.

Основными параметрами тиристоров являются: напряжение и ток включения, удерживающий ток и напряжение в открытом состоянии, отпирающий ток управляющего электрода и максимальное обратное напряжение.

В вышеописанных тиристорах рабочий ток протекал только при положительной полярности приложенного напряжения, т. е. их ВАХ не симметрична, что с успехом используется в управляемых выпрямителях. Потребность в управляемых источниках переменного тока привела вначале к использованию «встречновключенных» пар тиристоров, а затем к созданию приборов с симметричными характеристиками. Эти тиристоры были названы американской фирмой «General Electric» диак (DIAC — Diode AC semiconductor switch) и триак (TRIAC — Triode AC semiconductor switch). В отечественной литературе симметричные тиристоры называют симисторами. Эти приборы имеют многослойную полупроводниковую структуру из чередующихся типов проводимости: n-р-n-р-n, что и приводит к своеобразию их ВАХ.

1 ... 6 7 8 9 10 11 12 13 14 ... 62
Перейти на страницу:
Тут вы можете бесплатно читать книгу Радиоэлектроника-с компьютером и паяльником - Генрих Кардашев.
Комментарии