Категории
Самые читаемые
PochitayKnigi » Справочная литература » Справочники » Релейная защита в распределительных электрических Б90 сетях - А. Булычев

Релейная защита в распределительных электрических Б90 сетях - А. Булычев

Читать онлайн Релейная защита в распределительных электрических Б90 сетях - А. Булычев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 ... 25
Перейти на страницу:

Рис. 2.31. (б) Времятоковые характеристики предохранителей

3. При двукратной перегрузке по току предохранителя F2 его время срабатывания равно t2. Ток в головном предохранителе равен сумме токов нагрузок, то есть трем номинальным токам предохранителя F2 (ток в предохранителе F3 соответствует номинальному значению). Это есть номинальный ток предохранителя F1, и головной предохранитель при этом токе не сработает. Следовательно, сработает только предохранитель F2 с выдержкой времени, равной t2.Условие селективности при этом соблюдается.

4. При двукратной перегрузке по току предохранителя F3 его время срабатывания равно t3. Токи в головном предохранителе F1и в предохранителе первого присоединения F2 равны своим номинальным значениям, поэтому эти предохранители не сработают. Следовательно, сработает только предохранитель F3 с выдержкой времени, равной t3. Условие селективности при этом также соблюдается.

5. При токах нагрузок, превышающих номинальные значения вдвое, время срабатывания предохранителя F2 равно t2, а время срабатывания предохранителя F3 равно t3. В этих условиях ток в головном предохранителе соответствует четырем номинальным токам предохранителя F2. Время срабатывания предохранителя F1 при этом токе равно t1, причем t1 < t2 < t3. Следовательно, первым сработает головной предохранитель F1. Условие селективной работы защиты при этом нарушается.

6. При КЗ в точке К1 увеличивается ток только в головном предохранителе F1. Время срабатывания этого предохранителя будет зависеть от значения тока в нем и определяться времятоковой характеристикой. Срабатывание предохранителя F1 вызовет отключение нагрузок Н1 и Н2 от источника питания, а предохранители F2и F3 останутся в исходном состоянии.

Если в исходном нормальном режиме работы электрической цепи возникнет КЗ в точке К2, то возрастет ток в предохранителе первого присоединения F2 и в головном предохранителе F1. Характеристики этих предохранителей таковы, что при любых общих токах КЗ в них время срабатывания предохранителя F2 меньше времени срабатывания предохранителя F1 (см. рис. 2.31, б). Следовательно, предохранитель F2 сработает первым и селективно отделит место повреждения от исправной части электрической цепи.

Если в исходном нормальном режиме рассматриваемой электрической цепи возникнет КЗ в точке К3, то возрастет ток в предохранителе второго присоединения F3 и в головном предохранителе F1. Характеристики этих предохранителей пересекаются при значении тока, равном примерно 3,5 номинального для предохранителя F3(см. рис. 2. 31, б). При токах меньше этого значения время срабатывания предохранителя F3 меньше времени срабатывания предохранителя F1, а при токах больше этого значения время срабатывания предохранителя F3 больше времени срабатывания предохранителя F1. Следовательно, в данной ситуации при токах КЗ меньше указанного значения первым будет срабатывать предохранитель F3 и условие селективности будет соблюдаться. При токах же больше указанного значения первым сработает предохранитель F1 и оба (поврежденное и неповрежденное) присоединения потеряют питание. Здесь условие селективной работы предохранителей нарушается.

7. Селективное действие не обеспечивается в условиях, описанных в пунктах 5 и 6, то есть при токах в предохранителе F1,превышающих номинальный ток предохранителя F2 более чем в 3,5 раза.

8. Чтобы добиться селективной работы защиты предохранителями в рассматриваемой электрической цепи, необходимо, чтобы время срабатывания головного предохранителя было больше, чем время срабатывания предохранителей присоединений при всех возможных для них значениях тока. Для этого времятоковая характеристика предохранителя F1 не должна пересекать характеристик предохранителей F2 и F3, то есть должна располагаться выше этих характеристик (по оси tСР) во всем рассматриваемом диапазоне токов.

2.8. Защита от однофазных замыканий на землю

Защита от однофазных замыканий на землю может быть реализована на основе двух разных подходов [8]. Во-первых, путем общего (неселективного) контроля состояния изоляции сети относительно земли. Во-вторых, избирательно (селективно) действующими средствами, выявляющими замыкания на землю на отдельных присоединениях.

Общий контроль состояния изоляции и выявление однофазных замыканий на землю, как правило, основаны на непрерывном измерении напряжения нулевой последовательности в контролируемой электрической сети. При этом выявляется лишь факт возникновения замыкания. Но определить по напряжению нулевой последовательности, на каком из присоединений произошло повреждение, невозможно. Поэтому приходится их поочередно отключать. При отключении поврежденного присоединения напряжение нулевой последовательности в сети снижается до фонового уровня. Этот признак и используется при поиске повреждения.

В соответствии с определением симметричных составляющих напряжение нулевой последовательности представляется так:

Здесь ĖA0, ĖB0, ĖC0 — векторы э.д.с. фаз соответственно А, B, C относительно земли.

Отсюда следует, что в нормальном симметричном режиме, когда потенциал нейтрали сети равен нулю, а модули векторов ĖA0, ĖB0, ĖC0 равны соответствующим модулям векторов фазных э.д.с., напряжение нулевой последовательности в сети Ú = 0.

При замыкании фазы С на землю

Как видно, при металлическом замыкании фазы на землю модуль напряжения нулевой последовательности равен модулю фазной э.д.с. сети. Следовательно, действующее значение напряжения нулевой последовательности равно действующему значению фазного напряжения. Интегральное значение этого напряжения можно контролировать непосредственно с помощью реле, которое подключается к нейтрали сети через ТН (рис. 2.32).

Для контроля напряжения нулевой последовательности часто используется фильтр напряжения нулевой последовательности, построенный на основе трехфазного ТН, вторичные обмотки которого соединены по схеме разомкнутого треугольника (рис. 2.33) [8]. Для измерения текущих значений напряжения нулевой последовательности параллельно катушке реле напряжения KV подключается и вольтметр PV(см. рис. 2.32 и рис. 2.33).

Значение напряжения срабатывания (в масштабе первичных величин) выбирается по условию отстройки от максимально возможного напряжения нулевой последовательности, возникающего в контролируемой сети в нормальных для нее режимах:

UСЗ > U0HP MAX.

Здесь UСЗ — действующее (первичное) значение напряжения срабатывания защиты; U0HP MAX — наибольшее возможное в нормальных режимах действующее (первичное) значение напряжения нулевой последовательности в контролируемой сети.

Значение напряжения U0HP MAX определяется предельно допустимым потенциалом нейтрали (UN MAX), которое, в свою очередь, обусловлено степенью несимметрии емкостей фаз сети относительно земли:

UN MAX = (5 — 10) % UФ НОМ ,

где UФ НОМ — номинальное фазное напряжение сети.

Кроме этого, напряжение нулевой последовательности может возникать в сети как проявление замыканий на землю в смежных (внешних) сетях и погрешностей тракта измерений. В результате совместного воздействия этих двух факторов оно может составить 3–5 % UФ НОМ.

Принимая во внимание возможность появления напряжения нулевой последовательности под действием всех отмеченных факторов, как правило, выбирают:

UСЗ = 0,15UФ НОМ.

Напряжение срабатывания реле определяется с учетом коэффициента трансформации ТН (kТН):

UСР = UСЗ / kТН.

При стандартном значении максимального выходного напряжения трансформатора (фильтра) напряжения нулевой последовательности 100 В напряжение срабатывания реле равно 15 В. Это значение напряжения срабатывания иногда устанавливается без расчетов, так как оно соответствует минимально возможному напряжению срабатывания реле типа РН-53/60Д, используемого в защитах.

1 ... 6 7 8 9 10 11 12 13 14 ... 25
Перейти на страницу:
Тут вы можете бесплатно читать книгу Релейная защита в распределительных электрических Б90 сетях - А. Булычев.
Комментарии