Звезды: их рождение, жизнь и смерть - Шкловский Иосиф Самуилович
Шрифт:
Интервал:
Закладка:
Спектр источника Скорпион Х-1 многократно измерялся и в области 1—20 кэВ хорошо представляется экспоненциальным законом
(23.1)где E — энергия рентгеновских квантов, T — параметр, имеющий смысл температуры. Величина T порядка нескольких десятков миллионов кельвинов. Такой спектр бывает у очень горячей плазмы с температурой T, причем эта плазма должна быть прозрачна к собственному рентгеновскому излучению. Наряду с изменениями потока рентгеновского излучения наблюдаются одновременные изменения спектра, который, однако, сохраняет свой экспоненциальный характер. При таких изменениях характеризующая спектр температура меняется от 25 до 100 миллионов кельвинов! Следует, однако, заметить, что в области высоких энергий (E 50 кэВ) в спектре источника Скорпион Х-1 имеется довольно значительное избыточное излучение, заведомо не являющееся «продолжением» излучения горячей плазмы в этом спектральном диапазоне.
Оптический спектр звездочки, с которой отождествляется Скорпион Х-1, изображен на рис. 23.1. В ближней инфракрасной области спектральная плотность потока излучения растет с ростом частоты, а в видимой и ультрафиолетовой областях спектральная кривая идет почти горизонтально. Важную точку на спектральной кривой дали наблюдения в ультрафиолетовой области около 1500 Å, выполненные методами внеатмосферной астрономии. Эта точка ложится на продолжение горизонтальной части кривой рис. 23.1. На этот яркий непрерывный спектр накладываются довольно слабые линии излучения бальмеровской серии водорода, гелия и ионизованных атомов углерода и кислорода. Интенсивности этих линий, равно как и их лучевые скорости, очень сильно меняются. Например, лучевые скорости за несколько часов колеблются в пределах многих сотен километров в секунду, меняя при этом свой знак. Это означает, что облака ионизованного газа, излучающего эти линии, иногда движутся с такой большой скоростью на наблюдателя, иногда — от него. Интересно, что лучевые скорости линий, принадлежащих разным элементам, различны и часто меняются в противоположной фазе. Все вместе это означает, что в окрестностях источника Скорпион Х-1 происходят бурные процессы, сопровождаемые выбросами довольно больших масс газа.
Рис. 23.1:Основная часть непрерывного оптического спектра источника Скорпион Х-1 скорее всего является продолжением его рентгеновского спектра. Это означает, что как рентгеновское, так и оптическое излучение этого источника представляет собой обыкновенное тепловое излучение очень горячего газа, температура которого порядка нескольких десятков миллионов градусов. Но так как коэффициент поглощения такого газа сильно растет с уменьшением частоты излучения, то в близкой инфракрасной и в красной областях спектра он уже перестает быть прозрачным для собственного излучения. На этих частотах горячий газ должен поэтому излучать как абсолютно черное тело. В области частот, удовлетворяющих условию h < kT, зависимость интенсивности от частоты должна определяться классической формулой Рэлея — Джинса:
(23.2)где R — радиус излучающей области, r — расстояние до источника. Действительно, из наблюдаемого спектра, приведенного на рис. 23.1, следует, что в инфракрасной и красной областях F T2, как это и должно быть по закону Рэлея—Джинса. Зная T[ (3 5) 107 K] и оценивая грубо r 500 пс, нетрудно получить оценку радиуса излучающей области R 109 см, т. е. размеры источника рентгеновского излучения должны быть всего лишь около 10 000 км! Следовательно, это очень компактный объект. Из принятого нами значения r (которое, по причине высокой галактической широты источника, вряд ли может быть ошибочно больше, чем в два раза в ту или другую сторону) следует, что мощность рентгеновского излучения Скорпиона Х-1 (его «рентгеновская светимость») должна быть LX 1037 эрг/с, т. е. в 2—3 тысячи раз больше «полной» болометрической светимости Солнца! Если известны размеры источника, кинетическая температура заполняющей его горячей плазмы и теория ее излучения (которая очень хорошо и надежно разработана!), то не представляет труда оценить плотность частиц (электронов и ионов) в этой плазме. Эта плотность (вернее, концентрация) оказывается порядка 1016 см-3 — величина достаточно большая, близкая к концентрации частиц в верхних слоях солнечной фотосферы. Наконец, если известны размеры источника и его плотность, то легко оценить полную массу газа, излучающего наблюдаемые от этого источника рентгеновские кванты. Эта масса по астрономическим масштабам совершенно ничтожна: всего лишь около 1020 г, т. е. в сотню миллионов раз меньше массы земного шара. Запас тепловой энергии в этом плотном облаке плазмы около 1036 эрг. Это означает, что «предоставленное самому себе» плазменное облако должно было высветиться за какую-нибудь десятую долю секунды! Так как этот источник наблюдается вот уже свыше 20 лет (а «живет» по крайней мере многие тысячи лет), то должен существовать какой-то непрерывный и притом очень мощный источник «накачки» энергии в горячую плазму. Горячее плазменное облако, которое каким-то образом, перманентно нагреваясь, излучает рентгеновские кванты — это только «второстепенная деталь» совершенно необычного космического тела, непосредственно не наблюдаемого.
Как видим, анализ рентгеновского и оптического излучения источника Скорпион Х-1 позволил получить ряд важных выводов о его природе и вскрыть его совершенно неожиданные, дотоле неизвестные в астрономии свойства. Этот источник по своим общим характеристикам оказался не уникальным. Приблизительно такие же свойства были обнаружены и у другого источника, Лебедь Х-2, отождествляемого с любопытной звездой 15-й величины.
Естественно, что сразу же после открытия галактических рентгеновских звезд теоретики стали размышлять об их природе и прежде всего об источниках огромной энергии их рентгеновского излучения. Уж такова натура теоретиков; хотя информация о рентгеновских звездах тогда была совершенно не достаточна (она и сейчас, мягко выражаясь, не избыточна...), недостатка в различных гипотезах и теориях не было. Не надо быть, однако, слишком строгим к теоретикам — они верны человеческой природе. Очень уж хотелось, и это так естественно, понять сущность этих удивительных объектов... В то время «в воздухе чувствовалось», что открытие нейтронных звезд уже не за горами. Напомним, что это было за несколько лет до открытия пульсаров. Первая идея объяснения природы нейтронных звезд была простая и, если можно так выразиться, «лобовая». Спектр наблюдаемого излучения не исключал возможности его тепловой природы, т. е. возможности описания его формулой Планка с температурой порядка десяти миллионов кельвинов. Однако идея о том, что рентгеновские источники — это горячие нейтронные звезды, быстро обнаружила свою несостоятельность (см. § 19).