Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Науки о космосе » Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Читать онлайн Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 102 103 104 105 106 107 108 109 110 ... 154
Перейти на страницу:

Следующие несколько лет ученые тщательно исследовали концепцию Хокинга и сопоставляли ее со своими, а также они проверяли расчеты Хокинга излучения от черных дыр. Постепенно, один за другим, они соглашались с Хокингом и принимали его концепцию. Новые законы, возникавшие из этой концепции, получили название законов квантовых полей в искривленном пространстве-времени. Эти законы рассматривали черную дыру как объект общей теории относительности в искривленном пространстве-времени, не обладающий квантовомеханическими свойствами. А гравитационные волны, электромагнитные волны и другие типы излучений рассматривались как квантовые поля, другими словами, как волны, подверженные законам квантовой механики, и которые поэтому ведут себя и как волны, и как частицы (см. Врезку 4.1). [Полное слияние обшей теории относительности и квантовой теории, т. е. корректные законы квантовой гравитации, трактовали бы любой объект, включая искривленное пространство-время вокруг черной дыры, как квантовомеханический, т. е. подверженный принципу неопределенностей (Врезка 10.2), корпускулярноволновому дуализму (Врезка 4.1) и вакуумным флуктуациям (Врезка 12.4). Мы поговорим об этом полном слиянии и некоторых следствиях из него в следующей главе.]

Как же можно было достигнуть согласия в вопросе о фундаментальных законах квантовых полей в искривленном пространстве-времени, когда не было никаких экспериментов, которые могли бы помочь определиться? Как ученые могли признать правоту Хокинга, не имея никакого экспериментального подтверждения? Их уверенность происходила из требования согласованности. (Если бы соединение законов квантовых полей и законов искривленного пространства-времени было не вполне согласованным, тогда разные толкования законов могли бы привести к различным следствиям: иногда получалось бы, что черные дыры не могут излучать, а иногда, что они должны всегда излучать. Бедные физики, не зная во что верить, могли бы просто лишиться работы.)

Новые объединенные законы должны были согласовываться с законами искривленного пространства-времени ОТО в отсутствие квантовых полей и с законами квантовых полей в отсутствие искривления пространства-времени. Такое объединение и требование идеального согласования подобно полностью разгаданному кроссворду и позволяет определить форму новых законов практически[126] полностью. Если существует последовательное объединение законов (а оно должно быть, если стремление физиков познать Вселенную вообще имеет смысл), то они могут быть объединены только описанным способом и при общем согласии.

Требование согласования законов физики часто используется как инструмент при поиске новых законов. Однако это требование ранее не играло такой большой роли. Например, когда Эйнштейн создавал свои законы ОТО (глава 2), необходимость согласования не подсказала ему исходную предпосылку, а именно, что гравитация есть следствие искривления пространства-времени; этой предпосылке Эйнштейн обязан своей интуиции. Когда он осознал необходимость этой предпосылки, оказалось, что законы ОТО прекрасно согласуются с законами гравитации Ньютона, когда гравитация слаба, и с законами СТО, когда гравитация отсутствует вообще, т. е. форма новых законов определилась почти однозначно и стала ключом в открытии Эйнштейном уравнения поля.

** *

В сентябре 1975 г. я приехал в Москву в пятый раз и привез бутылку «Белой лошади» для Зельдовича. К моему удивлению, я обнаружил, что несмотря на то, что все западные ученые уже согласились с Хокингом и поняли, что черные дыры могут испаряться, никто в Москве не верил расчетам и выводам Хокинга. Хотя результаты Хокинга были подтверждены новыми, совершенно различными методами и информация об этом была опубликована в 1974—75 гг., в СССР об этом мало кто знал. Почему? Потому что в это не верили Зельдович и Старобинский. Они продолжали утверждать, что в процессе излучения черная дыра должна замедлять свое вращение и, в конце концов, перестать излучать совсем. Поэтому она не может испариться полностью. Я пытался спорить с Зельдовичем и Старобинским, но бесполезно: они знали гораздо больше меня о квантовых полях в искривленном пространстве-времени и хотя (как обычно) я был совершенно уверен, что правда на моей стороне, я не мог опровергнуть их доводов.

Я должен был вернуться в Америку во вторник 23 сентября. Вечером в понедельник, когда я упаковывал сумки, в моей комнате в гостинице «Университетская» зазвонил телефон. Это был Зельдович: «Приезжай ко мне, Кип! Я хочу поговорить об испарении черных дыр!» Времени у меня было в обрез, и на частной машине по незнакомому мне маршруту я поспешил к Зельдовичу. У меня возникло чувство, что мы заблудились, но когда мы повернули на Воробьевское шоссе, я успокоился. Сказав шоферу «спасибо», я вышел из машины напротив дома 2Б, быстрым шагом миновал калитку и, пройдя густо заросший деревьями двор, поднялся по ступенькам на второй этаж дома в квартиру Зельдовича.

Зельдович и Старобинский встретили меня на пороге с поднятыми вверх руками, но с ухмылками на лицах. «Мы сдаемся, Хокинг прав, а мы ошибались!» В течение часа они объясняли мне свою версию законов квантовых полей в искривленном пространстве-времени вокруг черной дыры. Вначале казалось, что их версия полностью отличается от версии Хокинга. На самом деле они были совершенно эквивалентны. Но в расчеты Зельдовича и Старобинского вкралась ошибка, и они сделали вывод, что черные дыры не могут испаряться. Исправив ошибку, они согласились с Хокингом.

* * *

В зависимости от того, каким способом будут сформулированы законы квантовых полей в искривленном пространстве-времени вокруг черной дыры, можно по-разному описать ее испарение. Однако во всех случаях источником излучения являются флуктуации вакуума. Проще всего описать излучение черной дыры следующим образом, пользуясь корпускулярной, а не волновой картиной.

Подобно «настоящим» волнам с положительной энергией флуктуации вакуума имеют корпускулярно-волновую природу, т. е. являются одновременно волнами и частицами (Врезка 4.1). Их волновую природу мы уже отмечали (Врезка 12.4): флуктуации происходят случайным и непредсказуемым образом, при этом положительная и отрицательная энергии моментально возникают то тут, то там, а средняя энергия равна нулю. Корпускулярную природу можно описать в рамках понятия виртуальных частиц, которые возникают парами и живут очень короткое время за счет энергии, заимствованной у соседних областей пространства, после чего аннигилируют и исчезают, отдавая вновь свою энергию смежным областям. В случае электромагнитных флуктуаций вакуума виртуальными частицами являются виртуальные фотоны-, в случае гравитационных флуктуаций вакуума — виртуальные гравитоны[127].

12.2. Механизм испарения черных дыр с точки зрения наблюдателя, падающего внутрь. Слева-, приливная гравитация черной дыры растаскивает пару виртуальных фотонов друг от друга, снабжая их энергией. Справа-, виртуальные фотоны, получив достаточное количество энергии, материализуются в реальные фотоны, один из которых улетает прочь от черной дыры, а другой падает в ее центр

На рис. 12.2 показано, каким образом флуктуации вакуума заставляют испаряться черные дыры. В системе отсчета наблюдателя, падающего внутрь черной дыры, возле горизонта событий черной дыры появляется пара виртуальных фотонов (слева). Виртуальные фотоны могут легко отделиться друг от друга, пока они оба остаются в области с положительной энергией электромагнитного поля. Эта область может быть и крошечной, и очень большой, поскольку флуктуации вакуума возникают во всех диапазонах. Однако размеры области всегда будут соответствовать длине флуктуирующей электромагнитной волны, так что виртуальные фотоны могут удалиться друг от друга только на одну длину волны. Если длина волны примерно равна окружности черной дыры, то виртуальные фотоны могут легко отдалиться друг от друга на четверть этой длины окружности, как показано на рисунке. Приливные силы гравитации возле горизонта событий очень сильны; они очень активно расталкивают виртуальные фотоны друг от друга, сообщая им большую энергию, как это представляется падающему на черную дыру наблюдателю, который находится на полпути между ними. Увеличения энергии фотонов к тому времени, как они будут находиться на расстоянии, равном четверти окружности горизонта событий, хватит для превращения фотонов в настоящие, долгоживущие фотоны (правая часть рис. 12.2). И у них еще остается достаточно энергии, чтобы отдать ее обратно смежным областям пространства с отрицательной энергией. Фотоны, ставшие теперь реальными, отделяются друг от друга. Один попадает внутрь горизонта событий и навсегда потерян для внешней Вселенной. Другой ускользает от черной дыры, унося с собой энергию (следовательно, и массу[128]), полученную за счет приливных сил гравитации. Черная дыра, у которой уменьшилась масса, немного сжимается.

1 ... 102 103 104 105 106 107 108 109 110 ... 154
Перейти на страницу:
Тут вы можете бесплатно читать книгу Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн.
Комментарии