ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.
Шрифт:
Интервал:
Закладка:
Количество нервных клеток у червя измеряется, я думаю, тысячами. Интересно то, что мы можем указать на какой-либо нейрон определенного червя и затем найти точно соответствующий ему нейрон у другого червя того же вида.[30]
Оказывается, мозги земляных червей изоморфны! Можно сказать, что существует всего один земляной червь.
Однако такое взаимооднозначное соответствие исчезает, как только мы обращаемся к высшим уровням иерархии мышления и количество нейронов возрастает, это подтверждает наше подозрение о том, что на свете — не только один человек! И все же между человеческими мозгами существует большое сходство, если сравнивать их на уровне, промежуточном между нейронами и более крупными составляющими мозга. Какой из этого можно сделать вывод относительно того, как индивидуальные различия представлены в физиологии мозга? Можно ли, рассматривая связи между нейронами моего мозга, найти такие структуры, в которых закодированы мои знания, убеждения, надежды, страхи, симпатии и антипатии? Если мы считаем, что мысленный опыт расположен в мозгу, можно ли наши те места или те физические подсистемы мозга, где расположены знания и другие аспекты интеллектуальной жизни? Это будет основным вопросом этой и следующей глав.
Загадка местоположения мозговых процессовВ попытке найти ответ на этот вопрос, невролог Карл Лашли провел длинную серию экспериментов. В этих экспериментах, начавшихся около 1920 года и продолжавшихся много лет, он попытался обнаружить, где в мозгу у крысы хранится ее опыт по прохождению лабиринтов. В своей книге «Мыслящий мозг» Стивен Роуз описывает злоключения Лашли:
Лашли хотел определить где в коре головного мозга расположена память. Для этого он сначала тренировал крыс находить дорогу в лабиринте, а затем удалял у них различные районы коры. После того как крысы выздоравливали он снова пускал их по лабиринту. К его удивлению, ему не удалось найти определенное место в мозгу ответственное за умение крыс находить дорогу к выходу. Вместо этого все крысы, у которых была удалена какая-либо часть коры, начинали страдать от тех или иных физических недостатков, серьезность которых была прямо пропорциональна количеству удаленной коры. Удаление коры повредило моторные и сенсорные способности животных, крысы начали хромать, подскакивать шататься или кататься по полу, но все они каким то образом, находили дорогу в лабиринте. Казалось что память расположена равномерно по всей коре. В своей последней статье «In Search of the Engram», опубликованной в 1950 году, Лашли мрачно заключил, что память вообще невозможна.[31]
Интересно, что в конце 1940-х годов, примерно в то же время, когда Лашли проводил свои эксперименты, в Канаде было найдено подтверждение противоположной точки зрения. Нейрохирург Вильдер Пенфильд изучал реакции пациентов во время операции над мозгом, вводя в различные области открытого мозга электроды и посылая слабые электрические импульсы, стимулирующие нейрон или нейроны, которых касался данный электрод. Эти импульсы были подобны импульсам, исходящим от других нейронов. Пенфильд обнаружил, что стимуляция определенных нейронов регулярно вызывает у пациентов специфические образы или чувства. Искусственно вызванные таким образом впечатления были самые разнообразные иногда пациенты испытывали странный, необъяснимый страх, иногда они видели цвета и слышали звуки — но самыми впечатляющими были случаи когда пациенты вспоминали целую цепь событий из далекого прошлого, как, например, детский праздник дня рождения. Набор точек способных вызвать подобную реакцию, был весьма мал: практически речь шла об одном-единственном нейроне. Очевидно что результаты, полученные Пенфильдом разительно отличаются от заключения Лашли, поскольку из них вытекает, что специфические воспоминания хранятся в строго определенных зонах мозга.
Какой вывод можно из этого сделать? Возможным объяснением было бы то, что одно и то же воспоминание закодировано одновременно в нескольких местах, расположенных по всей коре — стратегия, которая могла развиться в процессе эволюции, как защита от возможной потери части коры в бою — или во время экспериментов, проводимых нейрофизиологами. Другое возможное объяснение — то, что воспоминания могут восстанавливаться на основе динамических процессов, распространенных по всему мозгу, но при этом могут вызываться возбуждением местных точек. Эта теория основана на современных телефонных сетях, где распределение междугородных звонков не известно заранее, а выбирается в момент данного звонка в зависимости от загруженности телефонных сетей по всей стране. Поломка части сетей не остановит звонки — они будут просто направлены в обход испорченного места. В этом смысле любой звонок потенциально невозможно локализовать. И в то же время любой звонок соединяет всего две точки; в этом смысле локализовать его вполне возможно.
Определенность в обработке зрительных образовОдно из самых интересных исследований по локализации мозговых процессов проводилось в последние пятнадцать лет Дэвидом Хюбелем и Торстеном Визелем из Харвардского университета. Они проследили путь зрительных впечатлений в мозгу у кошки: сначала возбуждаются нейроны на сетчатке, возбуждение распространяется по направлению к затылку, проходит через боковое коленчатое тело, работающее в качестве «ретрансляционной станции», и прибывает к зрительной коре в задней половине мозга. Прежде всего, в свете результатов Лашли кажется удивительным, что существуют определенные мозговые пути; но еще более замечательными оказались свойства нейронов, расположенных на различных участках этого пути.
Оказывается, что нейроны сетчатки прежде всего воспринимают контраст. Это происходит следующим образом, обычно каждый из этих нейронов возбуждается с постоянной скоростью. Когда на него падает свет, нейрон может начать возбуждаться быстрее, замедлиться, или совсем перестать возбуждаться. Однако это происходит только в том случае, когда соседние участки сетчатки менее освещены. Это означает, что существуют два типа нейронов: «центральные» и «периферийные». Первые посылают сигналы с большей скоростью, когда центр небольшой круглой зоны сетчатки, к которой они принадлежат, освещен, а периферия находится в темноте. Вторые, напротив, увеличивают скорость посылки импульсов тогда, когда центр круга находится в темноте, а внешнее кольцо освещено. «Увидев» светлый центр, периферийные нейроны замедляются, и наоборот. Равномерное освещение не затрагивает ни тот, ни другой тип — нейроны обоих типов продолжают посылать сигналы с обычной скоростью.
С сетчатки сигналы, посланные этими нейронами, направляются по оптическому нерву к боковому коленчатому телу, расположенному близко к центру мозга. Там мы находим прямое соответствие поверхности сетчатки, в том смысле, что нейроны коленчатого тела отвечают только на некоторые стимулы, падающие на определенные места сетчатки. В этом смысле коленчатое тело не представляет особого интереса — это всего-навсего «ретрансляционная станция», и сигналы там не подвергаются дальнейшей обработке (хотя надо все же отдать ему должное — коленчатое тело, по-видимому, усиливает чувствительность к световым контрастам). Образ на сетчатке закодирован в схеме сигналов, посылаемых нейронами бокового коленчатого тела, несмотря на то, что нейроны там расположены не на плоскости сетчатки, а в трехмерном блоке. Таким образом, хотя два измерения здесь соответствуют трем, информация тем не менее сохраняется: еще один пример изоморфизма. Возможно, у этого изменения количества измерений есть некий глубинный смысл, которого мы еще не понимаем полностью. Так или иначе, в нашем знании о зрении пока еще так много пробелов, что мы должны не расстраиваться, а радоваться, что нам удалось, хотя бы до определенного предела, понять данный этап.