УРОЖАИ И ПОСЕВЫ - Александр Гротендик
Шрифт:
Интервал:
Закладка:
Разлад возник в конце прошлого столетия, с появлением и развитием того, что иногда называют «абстрактной (алгебраической) геометрией». В общих чертах она состояла в введении для каждого простого числа р геометрии (алгебраической) «в характеристике р», скопированной с непрерывной модели геометрии (алгебраической), унаследованной от предыдущих столетий, но все же в контексте, который выступал непримиримо «разрывным», «дискретным». Эти новые геометрические объекты приобрели все возрастающее значение в начале века, и особенно ввиду тесной их связи с арифметикой, наукой в полном смысле этого слова дискретной структуры. Похоже, одна из ведущих идей труда Андрэ Вей-ля{37}, даже может быть, главная движущая сила (которая, как водится, осталась более или менее невысказанной в его записанных работах), состоит в том, что «собственно» геометрия (алгебраическая), и в особенности «дискретные» геометрии, соответствующие различным простым числам, предоставляют ключ к широчайшему обновлению арифметики. Именно этим духом пронизаны прогремевшие в 1949 г. знаменитые гипотезы Вейля. Гипотезы совершенно потрясающие, по правде сказать, позволившие предвидеть для этих новых «многообразий» (или «пространств») дискретной природы возможность определенных типов конструкций и рассуждений{38}, казавшихся до тех пор немыслимыми вне рамок тех «пространств», которые одни только почитались аналитиками достойными этого имени - именно, пространства, называемые «топологическими» (для которых применимо понятие непрерывного изменения).
Прогулка по творческому пути, или дитя и Мать
Можно считать, что новая геометрия - это прежде всего прочего синтез двух миров, до ее появления смежных и тесно связанных друг с другом, но все же отдельных, различных: мира «арифметического», в котором живут (самозванные) «пространства» без принципа непрерывности, и мира непрерывных величин, где обитают «пространства» в собственном смысле этого слова, достижимые средствами аналитика и (по этой самой причине) им же признанные достойными пристанища в городе математических объектов. В новом видении эти два мира, некогда разделенные стеной, стали как один, сметя границы.
Впервые это видение арифметической геометрии (как я предлагаю назвать новую геометрию) зародилось в форме гипотез Вейля. В процессе развития некоторых моих главных тем{39} гипотезы эти оставались основным источником вдохновения все время от 1958 до 1966 г. Еще до меня, впрочем, Оскар Зарисский с одной стороны, затем Жан-Пьер Серр с другой, для пространств-без-стыда-и-совести в «абстрактной» алгебраической геометрии развили определенные «топологические» методы, основанные на тех, что прежде были в ходу среди пространств-с-прочными-устоями во всем мире{40}. Их идеи, несомненно, сыграли важную роль в построении новой геометрии, начиная с первых моих шагов; правда, скорее в качестве отправных точек и инструментов (которые мне пришлось в той или иной степени переделать для нужд куда более
В свете этой «поименной переклички»: если бы мне предложили назвать ближайших «прародителей» нового геометрического видения, то имена Оскара Зарисского, Андрэ Вейля, Жана Лерэ и Жан-Пьера Серра я бы произнес, не задумываясь. Среди них Серру принадлежит особая роль, так как главным образом через его посредство я ознакомился не только с его собственными идеями, но также с идеями Зарисского, Вейля и Лерэ, немало значившими для зарождения и развития новой геометрии.
широкого контекста), чем источника вдохновения, который продолжал бы питать мои мечты и проекты в течение месяцев и лет. Во всяком случае, было вполне ясно сразу, что, даже преобразованные, инструменты эти были весьма далеки от того, что требовалось уже для первых шагов в направлении фантастических гипотез Вейля.
11. Две идеи, схемы и топоса, оказались решающими для зарождения и развития новой геометрии. Возникнув почти одновременно и в тесном симбиозе друг с другом{41}, они вместе стали, как двигательный нерв для небывалого роста новой геометрии, считая с самого года своего появления. Чтобы закончить обзор моего труда, нужно, по крайней мере, сказать несколько слов об этих двух идеях.
Понятие схемы приходит на ум как самое естественное, самое «очевидное», когда речь идет о том, чтобы собрать в одно бесконечный ряд понятий «многообразия» (алгебраического), с каким приходилось иметь дело раньше (отдельное такое понятие для каждого простого числа{42}…). И потом, та же самая схема (или «многообразие» нового вида) одна порождает, для каждого простого числа р, однозначно определенное «многообразие (алгебраическое) в характеристике р». Набор этих различных многообразий в различной характеристике можно тогда себе представить чем-то вроде «(бесконечного) веера многообразий» (свое для каждой характеристики). «Схема» и есть этот магический веер, соединяющий между собой, как различные «ветви», эти «аватары», или «воплощения», всевозможных характеристик. Она же тем самым обеспечивает эффективный «принцип перехода», чтобы устанавливать связь между «многообразиями»-выходцами из геометрий, ранее представлявшихся в той или иной мере изолированными, отрезанными друг от друга. Теперь они оказались объединенными в одну общую «геометрию» и внутри ее между собой связанными. Ее можно было бы назвать
430 бурном зарождении новой геометрии (1958 г.) идет речь в сноске п° 31. Понятие ситуса, или «топологии Гротендика» (предварительная версия понятия топоса), появляется по горячим следам понятия схемы. Оно, в свою очередь, предоставляет в распоряжение математиков новый язык «локализации» или «спуска», который применяется на каждом шагу при развитии темы и инструмента теоретико-схемных. Понятие топоса, более глубокое и геометрическое, остается невыраженным в явном виде в течение нескольких последующих лет; оно выбирается на свет главным образом начиная с 1963 г. с развитием этальных когомологии и понемногу заставляет признать себя первым из основополагающих.
Прогулка по творческому пути, или дитя и Мать
теоретико-схемной геометрией, предварительным наброском «арифметической геометрии», ее бутоном, расцветшим в ходе последующих лет.
Идея схемы сама по себе - простоты младенческой; такая простенькая, такая скромная, что никому до меня и в голову не пришло за ней так низко нагнуться. И до того даже «дурашливая», признаться, что потом еще несколько лет, очевидности наперекор, для многих моих ученых коллег все это выглядело воистину «несерьезно»! У меня, впрочем, месяцы ожесточенного и уединенного труда ушли на то, чтобы убедиться в своем углу, что это действительно «работает» - что новый язык, этакий глуповатый, который я в своей неисправимой наивности упорно стремился испробовать, оказался и впрямь подходящим для того, чтобы уловить, в новом свете и с новой точностью, и в общих отныне рамках, некоторые из самых первородных геометрических предчувствий, связанных с уже существующими «геометриями в характеристике р». Это было своего рода упражнение, сочтенное поначалу дурацким и безнадежным всеми «достаточно компетентными» особами. Один я, без сомнения, мог когда-либо вбить себе в голову взяться работать над подобной нелепостью - и даже (тайным бесом ведомый) успешно завершить, всем чертям назло!
Вместо того чтобы дать сбить себя с толку окружавшим меня законодательным соглашениям о том, что серьезно и что нет, я просто доверился, как раньше, тихому голосу вещей, уже звучавшему во мне: ведь я умел прислушаться. Награда не заставила себя ждать, превзойдя всяческие ожидания. В течение этих нескольких месяцев, совсем даже не «нарочно», я нашел инструменты мощные и несомненные в своей эффективности. Они дали мне возможность не только вновь получить (играючи) старые результаты, знаменитые своей сложностью, в более резком свете и их превзойти, но также, приблизившись наконец вплотную, разрешить проблемы «геометрии в характеристике р», которые до тех пор казались вне пределов досягаемости любыми средствами, тогда известными{43}.
В процессе нашего познания законов Вселенной (математических или каких еще) только невинность, и ничто другое, наделяет нас реформаторской властью. Та изначальная невинность, данная нам от рождения, какая обитает в каждом из нас, будучи зачастую объектом нашего же презрения и тайного страха. Она одна объединяет смирение и смелость, благодаря которым мы оказываемся способны проникнуть в суть вещей и впустить вещи внутрь себя, проникшись ими.
Эта власть - отнюдь не особый «дар», как, скажем, исключительная способность рассудка усваивать и управляться легко и ловко с впечатляющей массой известных фактов, идей и технических приемов. Подобные дары без сомнения драгоценны и уж, конечно, достойны зависти тех, кто (как я) не был от рождения наделен ими так щедро - «сверх всякой меры».