Категории
Самые читаемые

Физиология силы - Вячеслав Шляхтов

Читать онлайн Физиология силы - Вячеслав Шляхтов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:

Высокая первоначальная частота импульсации и активность большого числа мотонейронов способствуют увеличению вероятности совпадения сократительных циклов разных ДЕ в начале движения. Таким образом, скорость развития сокращения мышцы зависит как от количества активных ДЕ, так и от начальной частоты и степени синхронизации импульсной активности мотонейронов данной мышцы.

Активность ДЕ мышц при статических усилиях и циклических движениях. В произвольном сокращении мышцы можно выделить два компонента: динамический, т. е. процесс изменения силы сокращения, и статический – поддержание достигнутого уровня силы. Характер активности разных типов ДЕ во многом будет определяться тем, обеспечивает ли она динамический или статический компоненты сокращения (Р.М. Городничев, В.И. Тхоревский, 1993).

При относительно кратковременном нарастании силы изометрического сокращения до максимума активность медленных и быстрых ДЕ различается (рис. 2.11). Частота импульсации низкопороговых, медленных ДЕ растет вначале очень быстро, а затем очень медленно, достигая некоторой относительно стабильной величины. Предельная частота для большинства медленных ДЕ обычно составляет 11–15 имп/с.

Рис. 2.11. Зависимости, характеризующие ДЕ двуглавой мышцы плеча человека (А. А. Гидиков, 1975)

А и Б – зависимость частоты разрядов в различных ДЕ (в имп/с) от величины стационарного изометрического напряжения (в % от максимального); А – ДЕ первого типа, Б – ДЕ второго типа.

В – зависимость величины суммарного эквивалентного потенциала ДЕ (в мВ) от величины стационарного изометрического напряжения, при котором ДЕ начинает импульсировать (в % от максимального),

Г – зависимость между стандартным отклонением межимпульсных интервалов (в мс) и величиной среднего межимпульсного интервала (в мс). Данные различных ДЕ обозначены различными символами: штриховой дана условная линия, разделяющая кинетические ДЕ от тонических; сплошные – линии среднего значения зависимости для обоих типов ДЕ; на рисунке показаны только 7 ДЕ

Активируются эти ДЕ при достижении усилия, равного 1-60 % от максимума. Для быстрых ДЕ (типа FF) характерно почти линейное нарастание частоты разрядов с возрастанием усилия до максимального уровня. Они включаются в работу при силе сокращения, составляющей 30–80 % от индивидуального максимума. ДЕ обоих типов активны как в процессе резкого увеличения сокращения, так и при его внезапном уменьшении. Характерной особенностью импульсной активности медленных ДЕ при внезапном увеличении усилия является значительное начальное учащение, сменяемое резким понижением частоты в момент уменьшения усилия, за которым следует новое повышение частоты.

У быстрых ДЕ изменения частоты более сглажены. Таким образом, при кратковременных изометрических сокращениях изменения силы происходят как за счет рекрутирования ДЕ, так и за счет изменения частоты их импульсации. В этом случае механизм изменения частоты импульсации ДЕ по своей природе обеспечивает более плавное дозирование силы, чем механизм рекрутирования. Это имеет особое значение для диапазона больших усилий, при которых рекрутирование каждой новой высокопороговой ДЕ дает весьма значительный прирост силы.

При длительном удержании произвольного статического усилия установившаяся частота импульсации ДЕ может некоторое время поддерживаться на относительно стабильном уровне. Изменения частоты импульсации зависят от величины удерживаемого усилия и типа самих ДЕ. Чем больше удерживаемое статическое усилие, тем за более короткое время снижается частота разрядов быстрых ДЕ. У медленных ДЕ частота импульсации изменяется мало. Характерной особенностью длительного изометрического сокращения является включение новых высокопороговых ДЕ по его ходу. Это связано с необходимостью поддерживать постоянную силу при развивающемся утомлении мышечных волокон путем усиления возбуждающих влияний на мотонейроны данной мышцы.

При выполнении циклических движений (концентрический и эксцентрический типы сокращения) характер импульсной активности ДЕ мышц, несущих основную нагрузку в этом движении, зависит главным образом от скорости его выполнения и величины преодолеваемой внешней нагрузки. Чем быстрее выполняется движение и чем больше преодолеваемая нагрузка, тем больше максимальная частота импульсации ДЕ в каждом цикле движения. При очень быстрых движениях включение ДЕ часто начинается с одного-двух укороченных межимпульсных интервалов (8-15 мс), что соответствует мгновенным частотам до 125 имп/с. Такая частота обеспечивает реализацию всех скоростных возможностей мышечных волокон.

Импульсы ДЕ возникают в определенные фазы цикла движения. При повышении темпа движения происходит уменьшение числа импульсов, которыми разряжается ДЕ в цикле движения (рис. 2.12). Некоторые ДЕ импульсируют в течение всего цикла, меняя лишь частоту разрядов в зависимости от фазы движения. Другие ДЕ включаются в работу на период выполнения определенного микроэлемента, например при переходе разгибания к сгибанию. Так же как и при изометрическом сокращении, в циклических движениях встречаются случаи активации ДЕ, когда генерируется всего лишь один разряд.

Рис. 2.12. Разряды одних и тех же ДЕ мышц-антагонистов при ритмических движениях в локтевом суставе (Д. Козаров, Ю.Т. Шапков, 1983)

Движения с частотой (Гц): А – 2.5, Б – 1.7, В – 1.5, Г – 0.75.

1 – механограмма движения (сгибание – вверх), 2 – разряды ДЕ двуглавой мышцы плеча, 3 – разряды ДЕ трехглавой мышцы плеча

В естественных условиях жизнедеятельности мышцы редко бывают полностью расслабленными. Обычно даже в состоянии покоя они сохраняют некоторое напряжение, называемое тонусом. Внешним выражением тонуса является определенная степень твердости мышц. Тонус скелетных мышц связан с низкочастотной активностью низкопороговых медленных ДЕ, мотонейроны которых активируются возбуждающими влияниями со стороны вышележащих моторных центров и периферических рецепторов.

Тонус скелетных мышц. Мышечный тонус имеет рефлекторную природу. Об этом свидетельствует тот факт, что перерезка задних корешков, по которым афферентные импульсы от периферических рецепторов поступают в спинной мозг, приводит к полному расслаблению мышцы.

Мышечный тонус зависит в значительной степени и от свойств самой мышцы: тургора мышечной ткани, ее эластичности, способности к деформации при сдавливании и растягивании. Все эти свойства физического характера, определяемые физико-химическими процессами в мышце, входят в общее понятие тонуса.

Человек способен произвольно регулировать тонус мышц в известных пределах – расслаблять мышцы по собственному желанию или же напрягать их, не совершая при этом какого-либо движения. Тонус скелетных мышц непроизвольно усиливается во время умственного напряжения или эмоционального возбуждения и существенно снижается во время сна.

Глава 3

Биоэнергетика силы

Единственным непосредственным источником энергии для мышечного сокращения служит АТФ. При активации мышцы повышение внутриклеточной концентрации ионов кальция приводит к сокращению и усиленному расщеплению АТФ. Интенсивность метаболизма мышцы возрастает при этом в 100-1000 раз. АТФ гидролитически расщепляется с помощью миозин-АТФ-азы до аденозиндифосфата (АДФ) и неорганического фосфата. Расщепление одного моля АТФ обеспечивает около 8 кДж энергии. Только 40–50 % этой энергии преобразуется в механическую энергию работы. Остальные 50–60 % превращаются в тепло. В естественных условиях лишь 20–30 % всех энерготрат идет на механическую работу, поскольку часть энергии используется для работы ионных насосов и окислительного восстановления АТФ. Чем больше произведенная работа, тем больше расходуются источники энергии и значительнее выделение тепла. Наибольшую работу мышца совершает при средних величинах внешней нагрузки. Эта закономерность названа законом средних нагрузок.

Для поддержания довольно длительной мышечной деятельности необходимо постоянное восстановление АТФ с той же скоростью, с которой он расходуется. Необходимая для ресинтеза АТФ энергия поступает в результате окисления углеводов, жиров, белков, а также за счет расщепления креатинфосфата и гликогена (глюкозы). Распад этих веществ сопровождается освобождением энергии, запасенной в их химических связях. Эта свободная энергия обеспечивает связывание АДФ и фосфата с образованием АТФ.

Ресинтез АТФ осуществляется в мышце двумя основными путями – анаэробным (без участия кислорода) и аэробным (с участием кислорода). Для ресинтеза и использования АТФ в качестве источника энергии в сокращающейся мышце могут действовать три энергетические системы: фосфагенная, гликолитическая и окислительная.

1 ... 3 4 5 6 7 8 9 10 11 12
Перейти на страницу:
Тут вы можете бесплатно читать книгу Физиология силы - Вячеслав Шляхтов.
Комментарии