Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Большое, малое и человеческий разум - Роджер Пенроуз

Большое, малое и человеческий разум - Роджер Пенроуз

Читать онлайн Большое, малое и человеческий разум - Роджер Пенроуз

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 10 11 12 13 14 15 ... 38
Перейти на страницу:

Глава 2. Тайны квантовой механики

В гл. 1 я попытался показать, что структура окружающего нас физического мира очень сильно зависит от законов математики (как это было показано на рис. 1.3), причем точность, с которой математика описывает фундаментальные физические аспекты, иногда представляется просто поразительной и заставляет вспомнить название знаменитой лекции Юджина Вигнера «Непостижимая эффективность математики в естественных науках». Список блестящих математических описаний природных явлений действительно выглядит весьма впечатляюще. Сюда входят, например:

Геометрия Евклида, которая на расстояниях порядка метров имеет точность порядка диаметра атома водорода. Как я уже отмечал в гл. 1, общая теория относительности не позволяет ей быть абсолютно точной, однако для практических целей точность евклидовой геометрии всегда исключительно высока.

Механика Ньютона, точность которой доходит до10-7 (для дальнейшего повышения точности необходимо учитывать релятивистские эффекты).

Электродинамика Максвелла, которая в сочетании с квантовой механикой достаточно хорошо описывает взаимодействия при изменении масштаба в 1035 раз, т. е. от размеров элементарных частиц до межгалактических расстояний.

Эйнштейновская теория относительности, о которой я уже рассказывал в гл. 1. В той области, где она применима (и где она обобщает и включает в себя квантовую механику), точность этой теории доходит до 10-14, что на семь порядков превышает точность механики Ньютона.

Квантовая механика, которая является темой этой главы и также представляет собой весьма точную теорию. Например, в квантовой электродинамике, представляющей собой сочетание квантовой механики, электродинамики Максвелла и специальной теории относительности, точность некоторых расчетов доходит до 10-11. В частности, можно особо отметить, что используемая в квантовой электродинамике так называемая «система единиц Дирака» включает в себя вычисленное значение магнитного момента электрона 1,001159652(46), которое прекрасно согласуется с экспериментально найденным значением 1,0011596521(93).

Особенно важно то, что во всех указанных теориях применение математических методов не только обеспечивает исключительную эффективность и точность описания физической картины, но и представляет интерес для развития самой математики, поскольку некоторые наиболее плодотворные идеи ее развития возникли именно на основе теоретических построений физики. В качестве примера можно указать обширные разделы математики, возникновение и развитие которых было обусловлено физическими исследованиями:

• теория действительных чисел;

• геометрия Евклида;

• математический анализ и теория дифференциальных уравнений;

• геометрия симплексов;

• дифференциальные формы и уравнения в частных производных;

• геометрии Римана и Минковского;

• теория комплексных чисел;

• теория гильбертова пространства;

• теория функциональных интегралов... и т. д.

Одним из наиболее ярких примеров такого рода является, безусловно, дифференциальное и интегральное исчисление, которое Ньютон и ряд других выдающихся математиков разработали в качестве математического основания обширного раздела физики, ныне известного под названием ньютоновской механики. Дальнейшее использование разработанных ими методов для решения различных чисто математических задач оказалось исключительно благотворным для развития самой математики.

В гл. 1 я уже говорил о масштабах физических объектов, измеряемых в пределах от фундаментальных единиц (длина Планка и время Планка, которые столь малы, что для описания даже самой маленькой элементарной частицы нам необходимо увеличивать их в 1020 раз), через размеры и время жизни человека (интересно, что мы, люди, являемся наиболее устойчивыми структурами физического мира), и наконец до возраста и радиуса Вселенной. При этом я особо подчеркивал важность того, что мы используем два совершенно разных метода для описания объектов физического мира, которые лежат на разных концах пространственно-временной шкалы. Как показано на рис. 2.1 (он просто повторяет рис. 1.5 первой лекции), мы используем квантовую механику для описания малых, квантовых уровней активности и классическую механику на уровне крупных объектов. Я обозначу эти уровни через U (унитарность, квантовый уровень) и С (классический уровень) и еще раз хочу подчеркнуть, что мы имеем дело, по-видимому, с совершенно разными законами в зависимости от масштаба изучаемых объектов.

Рис. 2.1.

Мне, как и любому другому физику, представляется очевидным, что если мы правильно понимаем законы квантовой физики, то из нее должны выводиться законы классической физики. Проблема, однако, заключается в том, что на практике мы всегда пользуемся либо классическим, либо квантовым уровнем описания, что, к сожалению, напоминает подход древних греков, для которых было абсолютно естественным наличие в мире двух совершенно различных наборов законов природы, действующих соответственно на Земле и в мире Идей или божественных установлений. Величие и мощь подхода, развитого Галилеем и Ньютоном, заключаются именно в объединении этих двух наборов, позволяющем понимать мир в рамках единой системы физических законов. Похоже, что современная физика вновь возвращает нас к ситуации, когда мы имеем разные наборы законов для классического и квантового уровней описания мира.

Во избежание недоразумения мне бы хотелось сразу оговорить одно обстоятельство, связанное с рис. 2.1. Помещая рядом с именами Ньютона, Максвелла и Эйнштейна слова «классический уровень» или «детерминизм», я вовсе не хочу сказать, будто эти ученые сами верили в детерминизм поведения Вселенной. Мы просто не знаем этого точно, хотя почти с уверенностью можно утверждать, что Ньютон и Максвелл, например, не разделяли этой точки зрения, в то время как Эйнштейн ее поддерживал. Пометки «детерминизм» и «вычислимость» относятся лишь к созданным этими учеными теориям, а не к их личной вере. Точно так же к квантовому уровню добавлены слова «уравнение Шредингера», хотя я не думаю, что сам Шредингер считал свое уравнение пригодным для описания «всей физики». Я еще вернусь к этому вопросу, а пока просто напоминаю читателю, что люди и создаваемые ими теории — вовсе не одно и то же.

Двухуровневая картина на рис. 2.1 сразу вызывает очевидные вопросы: «Развивается ли Вселенная только в соответствии с законами квантовой механики? Можно ли объяснить все поведение Вселенной в рамках квантовой механики?» Прежде чем перейти к их обсуждению, я должен хотя бы очень кратко перечислить те проблемы, которые может описывать и объяснять квантовая механика.

Стабильность атомов. До появления квантовой механики оставалось совершенно непонятным, почему электроны в атомах не падают по спирали на ядро. В классической физике существование устойчивых атомов запрещено.

Спектральные линии. Только наличие в атомах квантовых энергетических уровней и переходов между ними позволяет объяснить появление линий излучения, частоты которых мы можем наблюдать и предсказывать совершенно точно.

Химические силы. Образование и существование молекул обусловлены силами, имеющими принципиально квантово-механический характер.

Излучение черного тела. Вид спектра абсолютно черного тела может быть объяснен только при условии квантового характера излучения.

Надежность передачи наследственной информации. Биологические организмы осуществляют эту передачу квантовомеханическим путем на уровне молекул ДНК.

Лазеры. Действие лазера основано на существовании индивидуальных квантовых переходов между квантовыми уровнями молекул, а также на квантовой природе самого светового излучения (фотоны являются частицами Бозе-Эйнштейна).

Сверхпроводимость и сверхтекучесть. Эти явления, наблюдаемые при очень низких температурах, связаны с дальнодействующими квантовыми корреляциями (электронов и других частиц) в некоторых веществах.

• ... и т. д., и т. д.

Другими словами, квантовая механика почти вездесуща и давно используется в окружающих нас бытовых приборах и в различных высокотехнологических изделиях (например, в компьютерах). Элементарные частицы описываются квантовой теорией поля (представляющей собой сочетание квантовой механики и специальной теории относительности Эйнштейна), точность которой, как я уже отмечал, доходит до10-11. Разумеется, приведенный список лишь частично отражает огромную роль квантовой механики в современной науке.

1 ... 7 8 9 10 11 12 13 14 15 ... 38
Перейти на страницу:
Тут вы можете бесплатно читать книгу Большое, малое и человеческий разум - Роджер Пенроуз.
Комментарии