Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Науки о космосе » Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Читать онлайн Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 108 109 110 111 112 113 114 115 116 ... 154
Перейти на страницу:

Вначале он не собирался применять математический аппарат к физике. Его интересовала чистая математика. Но потом все изменилось.

Соблазн начался в 1952 г., когда Роджер, тогда студент четвертого курса Лондонского университетского колледжа, прослушал курс радиолекций по космологии, которые читал Фред Хойл. Лекции пленили его и побудили обратить внимание на физику, но вместе с тем немного смутили. Кое-что из того, о чем говорил Хойл, просто не могло иметь смысла! Старший брат Роджера, Оливер, изучал физику. Роджер решил навестить своего брата, к которому надо было ехать в Кембридж на поезде. В конце того же дня за обедом в Кингсвудском ресторане Роджер обнаружил, что один из коллег Оливера, Деннис Сиама, занимается теорией стационарной Вселенной Бонди — Голда-Хойла. Замечательно! Возможно, Сиама поможет Роджеру разрешить его сомнения. «Хойл говорит, что, в согласии со стационарной теорией, удаленные галактики не будут видны в расширяющейся Вселенной; они выйдут за пределы наблюдаемой части нашей Вселенной. Я не понимаю, как это может произойти». Роджер вынул ручку и стал рисовать на салфетке пространственно-временную диаграмму. «Из этой диаграммы следует, что удаляющаяся галактика будет тускнеть и краснеть, но все-таки не исчезнет совершенно. Что в моих рассуждениях неправильно?»

Сиама был поражен. Он никогда прежде не пользовался пространственно-временными диаграммами в такого рода рассуждениях. Пен-роуз оказался прав, а Хойл, очевидно, ошибался. И, что более важно, младший брат Оливера был феноменально способен!

После этого случая Деннис Сиама начал заниматься с Роджером Пенроузом по специальной программе, которую он впоследствии использует в занятиях со своими студентами в 1960-х годах (Стивеном Хокингом, Джорджем Эллисом, Брэндоном Картером, Мартином Рисом и др.; см. главу 7). Он вовлекал Пенроуза в длительные дискуссии, проводил с ним многочасовые занятия по животрепещущим проблемам физики. Сиама знал все обо всем, что происходило в физике; он заразил Пенроуза своим энтузиазмом и возбудил в нем интерес к этой науке. Вскоре Роджер был полностью увлечен. Впоследствии он защитит докторскую диссертацию по математике, но отныне именно стремление понять Вселенную будет руководить его исследованиями. Следующие несколько десятков лет он проведет, отдавая дань увлечения математике и физике одновременно.

* * *

Новые идеи часто посещают нас в самые неподходящие моменты, когда мы их меньше всего ожидаем. Мне кажется, они возникают в нашем подсознании, а подсознательная работа эффективнее всего совершается, когда сознание не очень активно. Примером тому может служить открытие, сделанное Хокингом в 1970 г. в процессе его подготовки ко сну, когда он понял, что площадь поверхности горизонта событий черной дыры всегда возрастает (глава 12). Другой пример — открытие, сделанное Роджером Пенроузом и изменившее наше понимание процессов, происходящих внутри черной дыры.

Однажды поздней осенью 1964 г. Пенроуз, в то время бывший профессором Биркбекского колледжа в Лондоне, направлялся со своим другом Ивором Робинсоном на работу. За год до этого были открыты квазары, и астрономы пытались доказать, что источником их энергии является схлопывание звезд (глава 9). Весь этот год Пенроуз решал проблему, может ли коллапс реальных, случайно деформированных звезд привести к возникновению сингулярностей. Пенроуз шел и разговаривал с Робинсоном, а его подсознание работало над объединением разрозненных элементов мозаики, элементов, с которыми его сознательный разум безуспешно боролся на протяжении долгих часов.

Пенроуз вспоминает: «Мы прервали наш разговор, когда переходили дорогу, и возобновили его, ступив на противоположный тротуар. За эти несколько мгновений мне в голову пришла идея, но вновь начатая беседа стерла ее из моей памяти. Робинсон ушел, я вернулся к себе в кабинет. Странное чувство ликования охватило меня, но я не мог докопаться до его причины. Я начал перебирать в уме события дня в попытке восстановить, что явилось причиной радостного возбуждения. Среди прочих мыслей я, наконец, наткнулся на ту, что посетила меня во время перехода улицы».

Идея действительно была великолепна. Она была оригинальным дополнением к теории относительности. В последующие несколько недель Пенроуз тщательно обдумывал ее, крутил и так и сяк, прорабатывал детали, стараясь сделать ее как можно более конкретной и математически точной. Отточив идею, он написал краткую статью в журнал Physical Review Letters, в которой рассмотрел возникновение сингулярностей в результате звездного коллапса и доказал математическую теорему.

Приблизительно теорема Пенроуза звучит следующим образом. Предположим, что какая-то звезда — она может быть любого вида — коллапсирует так, что силы гравитации становятся очень большими, и вокруг нее формируется видимый горизонт событий. Это значит, что все испускаемые звездой световые лучи будут затягиваться обратно ее сильным полем гравитации (Врезка 12.1). После этого уже ничто не сможет препятствовать росту гравитации и образованию сингулярности. Следовательно (поскольку любая черная дыра обязательно имеет видимый горизонт событий), каждая черная дыра должна содержать внутри себя сингулярность.

Наиболее удивительной особенностью теоремы сингулярности был ее всеохватывающий характер. Она имела отношение не только к коллапсу идеализированных звезд со специфическими, идеальными свойствами (в частности, совершенно сферических по форме звезд или звезд, вовсе не имеющих давления); ее также можно было применять не только к звездам с малыми первоначальными случайными флуктуациями. Теорема оказалась применимой к любой звезде в стадии схло-пывания, т. е. ко всем реальным коллапсирующим звездам в нашей реальной Вселенной.

Сила теоремы сингулярности Пенроуза заключалась в новом математическом аппарате, который он применил для ее доказательства. Никогда прежде физики не использовали в своих расчетах по общей теории относительности такой математический аппарат, как топологию искривленного пространства-времени.

Топология — область математики, качественно описывающая, как различные объекты соединяются друг с другом или сами с собой. Например, кофейная чашка и пончик с дыркой «имеют одинаковую топологию»: если допустить, что оба эти предмета сделаны из одинакового «теста», то мы можем гладким и непрерывным образом трансформировать один в другой, не разрывая, т. е. не нарушая никаких связей (рис. 13.5а). Наоборот, топология сферы отличается от топологии пончика: чтобы превратить сферу в пончик, мы должны проделать в ней дырку и изменить внутреннюю связность ее частей (рис. 13.5б).

Топология имеет дело только со связями, она не касается формы, размера или кривизны. Например, пончик и кофейная чашка имеют различную форму и кривизну, но у них одинаковая топология.

До появления теоремы сингулярности Пенроуза физики игнорировали топологию: считалось, что наиболее важную роль в общей теории относительности играет кривизна пространства-времени, а топология не связана с кривизной. (На самом деле, теорема Пенроуза касалась только топологии, в ней ничего не говорилось о кривизне сингулярности, т. е. не затрагивалась детальная структура приливных сил гравитации. В теореме говорилось о том, что где-то внутри черной дыры пространство-время кончается и все, что достигает этого конца, разрушается. Кривизна отвечает за то, как происходит это разрушение, а топология отвечает за то, что это разрушение, в принципе, происходит и что пространству-времени, в принципе, приходит конец.

До теоремы Пенроуза мы, физики, рассматривали проблему сингулярности только с точки зрения кривизны. Мы не задавались вопросами типа: «Существует ли конец пространства-времени (существует ли край, за которым пространства-времени уже нет)?» (рис. 13.5а). Или: «Какие области пространства-времени могут посылать сигналы друг другу, а какие нет?» (рис. 13.5 г). Однако общая теория относительности самым непосредственным образом связана с вопросами топологии. Первый из этих топологических вопросов очень важен для понимания сингулярностей, второй имеет непосредственное отношение к возникновению и существованию черных дыр, а также к космологии (к широкомасштабной структуре и эволюции Вселенной).

Эти топологические вопросы оказались такими важными, а математический аппарат топологии настолько мощным, что, фактически, Пенроуз совершил революцию в наших исследованиях, познакомив нас с топологией.

Отталкиваясь от этих весьма продуктивных идей, Пенроуз, Хокинг, Роберт Герох, Джордж Эллис и другие физики создали в середине и в конце 1960-х годов мощный математический аппарат общей теории относительности, основанный на топологических и геометрических методах. Это так называемые глобальные методы. Хокинг и Пенроуз в 1970 г. доказали на основе этих методов, не пользуясь никакими идеализациями, что в начале Большого взрыва и всеобщего расширения наша Вселенная должна была иметь пространственно-временную сингулярность, и если она когда-нибудь будет коллапсировать, то в Большом хрусте тоже должна появиться сингулярность. Кроме того, Хокинг в 1970 г. на основе этих глобальных методов ввел понятие абсолютного горизонта событий черной дыры и доказал, что поверхностная площадь абсолютного горизонта всегда возрастает (глава 12).

1 ... 108 109 110 111 112 113 114 115 116 ... 154
Перейти на страницу:
Тут вы можете бесплатно читать книгу Черные дыры и складки времени. Дерзкое наследие Эйнштейна - Кип Торн.
Комментарии