Категории
Самые читаемые

Вид с высоты - Айзек Азимов

Читать онлайн Вид с высоты - Айзек Азимов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 50
Перейти на страницу:

А нет ли каких-либо других веществ со столь же большими и сложными, но неполярными молекулами, тоже способными растворяться в метане? Самыми распространенными неполярными соединениями, ассоциирующимися с жизнью, являются липиды; здесь возникает вопрос: а может быть, существуют липиды с гигантскими молекулами?

Это не просто предположение. Такие гигантские молекулы липидов существуют на самом деле. В частности, в ткани мозга есть гигантские липидные молекулы сложной структуры (их функции неизвестны). Очень распространены в природе так называемые липопротеиды; эти соединения состоят как из липидов, так и из белков, объединенных в единые гигантские молекулы. Пока что человек всего лишь чуть-чуть затронул поверхность химии липидов; по-видимому, возможности неполярной молекулы гораздо больше, чем мы представляли себе до последнего времени.

Вспомните также, что биохимическая эволюция жизни на Земле шла в основном в полярной водной среде. Если бы жизнь развивалась в такой неполярной среде, как метан, то под действием тех же эволюционных сил молекулы липидов изменялись бы, создавались бы сложные и хрупкие нестабильные формы молекул, способные в конце концов выполнять функции, которые в нашем представлении обычно связываются с белками и нуклеиновыми кислотами.

В поисках веществ, имеющих в жидком состоянии еще более низкую температуру, чем метан, мы столкнемся лишь с водородом, гелием и неоном. Если исключить гелий и неон, останется водород — самое распространенное вещество Вселенной. (Некоторые астрономы считают, что, возможно, 4/5 Юпитера — это водород, а остальное — в основном гелий… в таком случае мы можем распрощаться с океанами аммиака.)

Водород становится жидким при –253 градусах и замерзает при –259 градусах; никакое давление не может поднять его температуру кипения выше –240 градусов. Это всего на 20–30 градусов выше абсолютного нуля, и поэтому более холодного фона для жизни, чем водород, представить невозможно. Водород неполярен, так что снова исполнителем главной роли был бы какой-нибудь липид.

* * *

До сих пор мы говорили о планетах более «холодных», чем Земля. А как же обстоит дело с планетами более «горячими»?

Начнем с того, что с химической точки зрения одни планеты резко отличаются от других. В солнечной системе, как, очевидно, и во всей Вселенной, существует три типа планет.

На холодных планетах молекулярные движения замедленны, и поэтому в процессе образования планета может удержать даже водород и гелий (самые легкие, а следовательно, и самые подвижные из всех веществ). Так как все здесь состоит из водорода и гелия, планеты имеют большие размеры. Вот известные нам примеры: Юпитер, Сатурн, Уран и Нептун.

На «горячих» планетах, где молекулярное движение ускорено, водород и гелий улетают в пространство. Более сложных атомов — этих жалких примесей в могучем океане водорода и гелия — хватает лишь на образование маленьких планет. Из основных соединений водорода остается только вода. Температура ее кипения выше, чем у остальных участников трио метан — аммиак — вода. Кроме того, вода лучше всего подходит для образования прочных соединений с силикатами, из которых состоит твердая кора планеты.

Возникают такие миры, как Марс, Земля и Венера. Здесь аммиачная и метановая формы жизни невозможны. Во-первых, при температуре этих планет аммиак и метан существуют в газообразном состоянии. Во-вторых, даже если спустя много миллионов лет и наступит период полного обледенения (температура при этом упадет достаточно сильно, чтобы аммиак или метан стали жидкими), — все равно количество аммиака и метана будет недостаточным для поддержания аммиачной или метановой формы жизни на любой из этих планет.

А теперь представьте себе мир еще более теплый, чем наше умеренное трио планет, мир настолько горячий, что в нем нет даже воды. Пример — Меркурий. Это твердое каменное тело; если в нем и есть водород или соединения водорода, то их очень мало.

Неужели здесь вовсе немыслимы формы жизни, которые можно было бы связать с существующими химическими механизмами?

Не обязательно.

Есть неводородные жидкости с температурой кипения выше, чем у воды. В космическом масштабе наиболее распространенной жидкостью такого рода была бы сера — при давлении в одну атмосферу она плавится при 113 градусах и кипит при 445 градусах (именно такова температура на солнечной стороне Меркурия).

Но кто же станет исполнителем главных ролей на этом фоне?

Рассмотренные нами до сих пор сложные молекулярные структуры — это обыкновенные органические молекулы, то есть гигантские молекулы, состоящие главным образом из углерода и водорода, с кислородом и азотом в качестве главных (по количеству) «примесей» и серой и фосфором в качестве второстепенных (опять-таки по количеству). Если бы молекула состояла только из углерода и водорода, она была бы неполярной, — кислород и азот придают ей полярные свойства.

На фоне воды (а она, как известно, состоит из кислорода и водорода) следует ожидать, что в живой ткани атомов кислорода больше, чем атомов азота. На Земле именно так и обстоит дело. На фоне аммиака, как мне кажется, атомы азота будут превалировать над атомами кислорода. Два подвида соответствующих белков и нуклеиновых кислот можно было бы отличать друг от друга, ставя в скобки О или N (чтобы указать, каких атомов больше).

Липиды, играющие главные роли на фоне метана и водорода, бедны как кислородом, так и азотом; они почти целиком состоят из углерода и водорода и поэтому неполярны.

Но на такой горячей планете, как Меркурий, ни белки, ни нуклеиновые кислоты, ни липиды не могли бы существовать. При температуре жидкой серы все известные нам органические соединения — кроме простейших — разрушаются. Земные белки при температуре от 60 градусов и выше разрушаются уже через несколько минут.

Как же тогда стабилизировать органические соединения? Первое, что приходит в голову, — это заменить водород каким-нибудь другим элементом, так как в горячих мирах ощущается острая нехватка водорода.

Давайте поговорим о водороде. Атом водорода — самый маленький из всех атомов; его можно протиснуть в молекулярную структуру там, где другие атомы не пройдут. В любую, даже самую сложную углеродную цепочку можно со всех сторон втиснуть маленькие атомы водорода — получатся углеводороды. Любой другой атом оказался бы для этого слишком большим… кроме одного.

«Кроме одного»! Какого же? Оказывается, только атом фтора по размерам почти так же мал, как атом водорода, и обладает сходными химическими свойствами (по крайней мере в отношении способности участвовать в определенных комбинациях молекул). К сожалению, фтор так активен, что химикам очень трудно с ним работать, и поэтому они, естественно, больше занимались исследованиями не столь агрессивных элементов.

Но во время второй мировой войны положение изменилось. Возникла необходимость работать с гексафторидом урана: это был единственный способ ввести уран в соединение, которое без особого труда превращалось в газ. Работу с ураном надо было продолжить (вы знаете почему), и волей-неволей пришлось иметь дело и с фтором.

В результате была создана целая группа фторуглеродов, сложных молекул, состоящих из углерода и фтора, а не из углерода и водорода. Так была заложена основа химии фторорганических соединений.

Разумеется, фторуглероды инертны в значительно большей степени, чем соответствующие углеводороды (именно это свойство оказалось особо ценным для промышленности), и, по-видимому, совершенно не обладают гибкостью и изменчивостью, необходимыми для жизни.

Но ведь полученные до настоящего времени фторуглероды аналогичны полиэтилену или полистиролу. Эти последние относятся к органическим соединениям водорода, а если бы нам пришлось судить о возможностях таких соединений только по полиэтилену, то мы едва ли могли бы составить представление о белках.

Насколько мне известно, до сих пор еще никто не только не имел дела с проблемой фтористых белков, но даже и не думал об этом. Но почему бы нам и не поговорить о ней? Не приходится сомневаться в том, что фтористые белки при обычной температуре должны быть гораздо менее активными, чем обычные белки. Но на такой планете, как Меркурий, где температура настолько высока, что водородные органические соединения разрушаются, фторорганические соединения могли бы стать как раз настолько активными, чтобы поддержать жизнь; возможно, именно из этих фторорганических соединений и развилась бы там жизнь.

* * *

Такая фторорганическая жизнь на фоне серы возможна, конечно, лишь при условии, что количества фтора, углерода и серы на горячих планетах достаточны для развития жизни в результате случайных реакций, протекавших на протяжении всего существования солнечной системы.

1 ... 8 9 10 11 12 13 14 15 16 ... 50
Перейти на страницу:
Тут вы можете бесплатно читать книгу Вид с высоты - Айзек Азимов.
Комментарии