Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев

Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев

Читать онлайн Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 8 9 10 11 12 13 14 15 16 ... 69
Перейти на страницу:
class="p1">Рис. 31

Первая кривая устроена как окружность, окрестность любой ее точки — просто интервал, а вторая кривая устроена иначе (рис. 32). Потому что в любой микроскоп окрестность точки пересечения видится как крест, а не как отрезок. То же самое с тором — с автомобильной камерой. С точки зрения таракана, который по ней ползает, это просто плоскость (если, конечно, дырка в торе не была заклеена). Но и шар с точки зрения таракана тоже плоскость (ведь он в каждый момент времени видит только маленький кусочек «у себя под носом», а он почти плоский). То есть смотрите, что происходит. Таракан, который ползает по тору и по шару, не может понять, что это разные объекты. Мы такие же тараканы, мы живем в трехмерном пространстве, мы трехмерные тараканы. Мы знаем, что вокруг нас есть окрестность. Окрестность это обычное трехмерное пространство: его определяют 3 взаимно перпендикулярных оси. То есть я вижу трехмерную окрестность вокруг себя, но я не знаю, как устроена вся вселенная целиком. Я не могу иметь такого представления. Так вот: топология приоткрыла эту тайну. Гипотеза Пуанкаре как раз про то, как устроено пространство, где мы живем. Мы видим, что вокруг нас всё трехмерно, но мы не знаем внутри какого рода объекта мы живем. То ли мы живем в обычном бесконечном трехмерном пространстве, то ли мы живем на поверхности трехмерной, извините, сферы, которая ограничивает четырехмерный шар. Не можем мы этого понять, просто посмотрев вокруг себя. Ведь радиус такой «трехмерной сферы» может равняться, скажем, 100 миллионам световых лет. А на такие расстояния глаз посмотреть не способен.

Рис. 32. Слева — простая замкнутая кривая (не пересекает сама себя). Справа — что-то вроде дороги с перекрестком. Топологический тип этих двух одновременных объектов разный.

Врезка 3. Еще одно упражнение для слушателей. Ниже описано странное путешествие неких космических Магелланов. Могло ли такое быть в космосе?

… Все астрономы Земли в 3333 году нашей эры были в глубоком недоумении. Один из них, направляя свой телескоп в разные точки небесной сферы, имел привычку фотографировать не только ее, но и (перейдя в другое полушарие Земли), фотографировать также диаметрально противоположную ей точку. Накопив изрядное количество таких пар фотографий, он принялся их изучать. И вдруг — сюрприз: на одной из двух фотографий пары он увидел маленькое, но вполне различимое созвездие в виде правильного пятиугольника. Велико же было его изумление, когда на другой фотографии пары он увидел ТАКОЕ ЖЕ созвездие, той же величины и той же яркости! Велико было и удивление всех остальных астрономов, когда они услышали это сообщение (и немедленно проверили его). И скоро об этом узнали все жители Земли. Было решено одновременно выслать две космических экспедиции (на предмет проверки, не посылают ли на Землю сигналы внеземные цивилизации): одна экспедиция — прямо в центр первого пятиугольника, вторая — в центр диаметрально противоположного пятиугольника.

Долго летели космонавты в ту и в другую сторону с одинаковой «субсветовой» скоростью — целых 10 лет. И всё это время за их ракетами наблюдали чуткие приборы астрономов. Вдруг в центре первого 5-угольного созвездия была зафиксирована яркая вспышка неправильной формы, и первая ракета ИСЧЕЗЛА. Астрономы решили взглянуть, видна ли вторая ракета. К своему ужасу, они увидели, что ровно в тот же момент с диаметрально противоположной стороны была зафиксирована вспышка ТОЙ ЖЕ ФОРМЫ, и вторая ракета тоже исчезла.

Могло ли такое быть?

ОТВЕТ. Могло. Если бы только космос, в который погружена Земля, был не бесконечным трехмерным пространством, а очень большой, но конечной трехмерной сферой.

Чтобы лучше понять это, представьте себе, что наша Земля сплошь покрыта мировым океаном, на котором имеется (на экваторе) только один небольшой остров вроде Крита. Поверхность этого океана является двумерной сферой, но свойства у нее похожи на свойства трехмерной сферы. И выплыли с этого острова два одинаковых корабля (в один и тот же момент времени): один поплыл ровно на запад, другой — ровно на восток. Плыли они быстро и потому очень сильно столкнулись (в точке, диаметрально противоположной острову Криту). От столкновения они могли взорваться. После отплытия прочие люди следили за ними, посылая вслед радиоволны (а они, как известно, могут огибать поверхность Земли). На экране радара и на западе, и на востоке всё время был виден какой-то странный правильный пятиугольник (оказалось, что это — радиомаяк из пяти источников, построенный кем-то на противоположной точке поверхности Земли). Корабли взорвались как раз в центре этого пятиугольника. Взрыв был зафиксирован одновременно и западным, и восточным радаром.

Сверху из нашего трехмерного мира мы видим, что тор и сфера — разные объекты. Но глазами червя, который ползает по двумерной поверхности, этого не видно, всё одинаковое. Вопрос: как же доказать червю, что поверхности разные?

Допустим, что у червя есть мышление, он может воспринять математическое рассуждение. Как я могу передать ему знание? А вот как. Я ему говорю: «Ты можешь, экспериментально исползав сферу, проверить, сколько здесь вершин?» Он говорит: «Ну, конечно могу. Я постепенно все их обползаю, поставлю метку, найду алгоритм, которым я посчитаю количество вершин». Тогда я спрошу: «Можешь ли ты посчитать количество ребер?» — «Ну, конечно, могу», — говорит он. «А граней?» — «Тоже могу. Нет проблем никаких. Каждый раз переходя из грани в грань, заливаю ее водой. В следующий раз я к ней приду, а она уже мокрая, значит, я ее уже посчитал». Понятно, что, находясь на двумерной поверхности, не выходя в трехмерное пространство, можно посчитать, сколько ребер, вершин и граней. Теперь, если я пересажу червя на тор, он посчитает вершины, грани и ребра и убедится, что индекс Эйлера имеет другое значение. На сфере — 2, а на торе — 0. Тут я ему и скажу: «Теперь ты понимаешь, что поверхности абсолютно разные, они с нашей человеческой трехмерной точки зрения абсолютно разные. Они с твоей точки зрения одинаковые, потому что ты видишь локально, а с нашей трехмерной — они разные». То же самое происходит с нашей трехмерной вселенной, с точки зрения четырехмерного пространства. Наше пространство может быть устроено по-разному, но Г. Перельман доказал теорему, которая ограничивает класс того, что нам нужно проверять, когда мы выясняем, где живем.

Слушатель: А как Эйлер пришел именно к этой формуле?

А.С.: Честно говоря, я не знаю, но он вообще был гений. Говорят, что у него

1 ... 8 9 10 11 12 13 14 15 16 ... 69
Перейти на страницу:
Тут вы можете бесплатно читать книгу Математика для гуманитариев. Живые лекции - Алексей Владимирович Савватеев.
Комментарии