Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Электромеханика в космосе - Андраник Иосифьян

Электромеханика в космосе - Андраник Иосифьян

Читать онлайн Электромеханика в космосе - Андраник Иосифьян

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 4 5 6 7 8 9 10 11 12 13
Перейти на страницу:

Рис. 19. Оптико-электронная схема «Большого космического телескопа»:

1, 2, 3 и 4 — оптические зеркала; 5 — вычислительный модуль; 6 — прецизионные гироскопы-датчики; 7 — моментные электрогироскопы; 8 — датчики точного наведения; α — угол отклонения от заданного направления

Структурная схема силового моментного электрогироскопа (по одной из строительных осей) представлена на рис. 9.

Одной из проблем, возникших при проектировании телескопа, была необходимость стабилизации движения изображения с точностью 0,005" (от среднеквадратичного значения), требуемой для получения максимального выигрыша по сравнению с наземными дифракционными телескопами (имеющими относительно слабое разрешение). На первом этапе решения этой проблемы пытались создать систему управления, использующую вторичное зеркало стабилизации, с точностью ±1". При дальнейшей разработке «Большого космического телескопа» использовались модели, рассчитанные с помощью ЭВМ, на которых сравнивались методы стабилизации и ориентации, использующие моментный гироскоп и электрореактивные маховики при различных внешних воздействиях. Эти экспериментальные исследования показали, что в принципе планируемая точность стабилизации спутника вполне возможна. Однако перед конструкторами встали весьма трудные проблемы, для разрешения которых потребуются «ропотливые экспериментальные исследования вибрации электрореактивных маховиков, возникающей гари дебалансе и в зонах нечувствительности в измерительных приборах. Каждый из этих факторов может ухудшить стабилизацию. Корабль с космическим телескопом имеет форму усеченного конуса. Центр пересечения основных строительных осей спутника размещен в центре его масс. Управление телескопом (в целом) осуществляется бортовой ЭВМ, на выходе которой имеются внешние блоки управления электромеханическими исполнительными органами телескопа.

Быстродействующие внешние моменты воспринимаются электродвигателями-маховиками, которые после «насыщения» разоружаются с помощью силовых гироскопов стабилизации. Принцип электромеханического управления заключается в том, что в момент торможения с помощью противотока в роторе электродвигателя-маховика подается команда не на газореактивный двигатель или моментный магнитодвигатель, а на моментный электродвигатель (ЭД) (см. рис. 9) силового электрогироскопа стабилизатора. В результате гироскоп (Г) поворачивается на некоторый угол, воспринимая на себя, как это следует из законов механики, кинетический момент электродвигателя-маховика. После достижения некоторого угла поворота, называемого углом «насыщения» силового гироскопа (в отличие от «насыщения» скорости вращения электродвигателя-маховика), подается команда на «разгрузку» угла поворота силового электрогироскопа с помощью газореактивной или магнитомоментной системы исполнительных органов. Таким образом, обеспечивается высокая прецизионность силового управления «Большим космическим телескопом» в пространстве.

КОСМИЧЕСКАЯ ЭЛЕКТРОМЕХАНИКА БУДУЩЕГО

Электромеханика синтезированных летательных аппаратов. Интересным направлением развития космических летательных аппаратов является создание в будущем электрореактивного электроплана. К. Э. Циолковский в своей работе «Исследования мировых пространств реактивными приборами» писал: «Может быть с помощью электричества можно будет со временем придавать громадные скорости выбрасываемым из реактивного прибора частицам. И сейчас известно, что катодные лучи трубки Крукса сообщают электронам, имеющим массу в 4000 раз меньше массы атома гелия, скорость, которая может достигать до 30 — 100 тыс. км/с, т. е. что в 6 — 20 тыс. раз больше скорости продуктов горения, выталкиваемых из нашей реактивной трубы».

Как уже отмечалось, электрореактивные двигатели малой тяги используются в различных космических аппаратах для изменения траектории полета или их орбиты обращения вокруг Земли. Однако в свете современных достижений физики твердого тела и с учетом перспектив развития науки в этой области принцип работы электрореактивных двигателей, которые при наличии мощного источника энергии потребляют ничтожное количество массы для создания тягового усилия, позволит в будущем создать перспективные летательные аппараты с применением силовых маршевых электрореактивных двигателей.

В настоящее время, как известно, во всем мире ведутся работы по повышению КПД солнечных батарей, преобразующих энергию квантов солнечного света непосредственно в электрическую энергию. Если удастся создать такие пленочные материалы, которые поднимут КПД солнечных элементов до нескольких десятков процентов, то при применении соответствующей электронной технологии микросхем можно на больших поверхностях, исчисляемых сотнями и тысячами квадратных метров, получать достаточное количество энергии для работы маршевых двигателей и обеспечить движение космических летательных аппаратов к самым дальним планетам Солнечной системы.

Полуфантастическая конструкция — электроракетоплан — имеет на своем борту мощную электростанцию, обладающую достаточно малой массой. Энергия от такой электростанции подводится к электрореактивным двигателям, вращающим вертолетный винт огромного диаметра и располагающимся на его трех лопастях вместе с соответствующими запасами излучающей массы. Электрореактивные винты большого диаметра дают очень большую силу тяги на единицу расходуемой мощности, и поэтому такой винт способен в вертикальном режиме поднять летательный аппарат на орбиту вокруг Земли.

По мере набора скорости такой космический аппарат переходит из вертикального режима в режим наклонного полета, и, кроме того, в условиях разреженной воздушной атмосферы увеличивается угловая скорость вращения электрореактивного винта, который продолжает дальше разгонять аппарат до сверхзвуковых скоростей. После получения электропланом необходимой скорости лопасти его электрореактивного винта, до этого работающие в самолетном режиме, поворачиваются вокруг своих продольных осей. Тем самым достигаемая тяга со всех трех лопастей будет создавать общую тягу уже в направлении продольной оси движения электроракетоплана. После выхода на орбиту электроракетоплан способен возвратиться по спиральной кривой опять на Землю в результате гашения своей космической скорости в течение относительно длительного промежутка времени, при котором возникающие тепловые процессы не выводят из строя рабочие элементы электродвигателей.

Общие перспективы развития космических электромеханических систем. Среди научно-прикладных задач, решаемых в современной космонавтике, исключительное значение имеет использование космических средств в интересах народного хозяйства. Речь идет о космических лабораториях, на борту которых в условиях глубокого вакуума и невесомости в будущем будет организовано производство новых материалов: металлов, проводников, полупроводников, а также изоляционных и магнитных материалов. Создаваемые вначале в специальных орбитальных лабораториях, они будут затем производиться в космических мастерских, цехах и даже опытных производствах. Такие лаборатории, мастерские и опытные производства, естественно, должны размещаться в космических кораблях огромного объема и тоннажа, присущих сегодняшним морским кораблям.

Для осуществления всего этого в будущем необходима полная электрификация объектов, существующих ч действующих в космическом пространстве. Так как технической базой электрификации являются средства электротехники, то создание электрифицированных объектов на орбитах планет и на самих планетах является задачей будущей электротехники.

Мы рассмотрели электромеханику как отрасль электротехники применительно к космическим аппаратам и космическим станциям. Эта отрасль науки и техники будет все время развиваться. Электромеханические системы сложных агрегатов для автоматизации и механизации технологических процессов включают целый комплекс электрических машин постоянного и переменного тока с соответствующими электронными блоками и с синтезированными управляющими ЭВМ для решения задач автоматического регулирования и управления этими процессами.

Очевидно, что эти направления развития электромеханики должны быть соответствующим образом учитывать условия космической среды, в которой действуют космические орбитальные станции, а в будущем — условия окружающей среды планет и спутников Солнечной системы.

Как новая зарождающаяся отрасль техники космическая электромеханика будучи синтезом электрических машин, аппаратов, низковольтных систем регулирования, электронной техники, имеет свои внутренние законы, определяющие физические процессы и конструктивные формы этого синтеза. Сейчас, например, создаются целые серии бесколлекторных, бесщеточных машин постоянного тока, в которых коллекторы и щеточные узлы заменяются транзисторными и тиристорными блоками, обеспечивая тем самым их высокую надежность и длительность срока службы, исчисляемую годами.

1 ... 4 5 6 7 8 9 10 11 12 13
Перейти на страницу:
Тут вы можете бесплатно читать книгу Электромеханика в космосе - Андраник Иосифьян.
Комментарии