Большая Советская энциклопедия (Бо) - БСЭ
Шрифт:
Интервал:
Закладка:
Получение и применение. Элементарный Б. из природного сырья получают в несколько стадий. Разложением боратов горячей водой или серной кислотой (в зависимости от их растворимости) получают борную кислоту, а её обезвоживанием — борный ангидрид. Восстановление В2 О3 металлическим магнием даёт Б. в виде темно-бурого порошка; от примесей его очищают обработкой азотной и плавиковой кислотами. Очень чистый Б., необходимый в производстве полупроводников, получают из его галогенидов: восстанавливают BCl3 водородом при 1200°С или разлагают пары BBr3 на танталовой проволоке, раскалённой до 1500°С. Чистый Б. получают также термическим разложением бороводородов.
Б. в небольших количествах (доли %) вводят в сталь и некоторые сплавы для улучшения их механических свойств; уже присадка к стали 0,001—0,003% Б. повышает её прочность (обычно в сталь вводят Б. в виде ферробора , т. е. сплава железа с 10—20% Б.). Поверхностное насыщение стальных деталей бором (до глубины 0,1—0,5 мм ) улучшает не только механические свойства, но и стойкость стали против коррозии (см. Борирование ). Благодаря способности изотопа 10 В поглощать тепловые нейтроны, его применяют для изготовления регулирующих стержней ядерных реакторов , служащих для прекращения или замедления реакции деления. Б. в виде газообразного BF3 используют в счётчиках нейтронов. (При взаимодействии ядер 10 В с нейтронами образуются заряженные a-частицы, которые легко регистрировать; число же a-частиц равно числу нейтронов, поступивших в счётчик: 10 5 B + 1 0 n = 7 3 Li + 4 2 a) (см. также Нейтронные детекторы и индикаторы ). Сам Б. и его соединения — нитрид BN, карбид B4 C, фосфид ВР и др. — применяют как диэлектрики и полупроводниковые материалы. Обширное применение находят борная кислота и её соли (прежде всего бура), бориды и др. BF3 — катализатор некоторых органических реакций.
Лит.: Некрасов Б. В., Основы общей химии, т. 2, М., 1967; Щукарев С. А., Лекции по курсу общей химии, т. 2, Л., 1964; Бор, его соединения и сплавы, К., 1960.
В. Л. Василевский.
Б. в организме. Б. относится к числу химических элементов, которые в очень малых количествах содержатся в тканях растений и животных (тысячные и десятитысячные доли % на сухую массу). Б. необходим для поддержания нормальной жизнедеятельности растений. Важнейший симптом недостатка Б. — отмирание точки роста главного стебля, а затем и пазушных почек. Одновременно черешки и листья становятся хрупкими, цветки не появляются или не образуются плоды; поэтому при недостатке Б. падает урожай семян. Известны многие болезни, связанные с недостатком Б., например гниль сердечка сахарной свёклы, чёрная пятнистость столовой свёклы, побурение сердцевины брюквы и цветной капусты, засыхание верхушки льна, желтуха верхушки люцерны, бурая пятнистость абрикосов, опробковение яблок. При недостатке Б. замедляется окисление сахаров, аминирование продуктов углеводного обмена, синтез клеточных белков; однако ферменты, для которых Б. является необходимым элементом, пока неизвестны. По данным М. Я. Школьника, при недостатке Б. у растений снижается содержание аденозинтрифосфорной кислоты, а также нарушается процесс окислительного фосфорилирования , вследствие чего энергия, выделяющаяся при дыхании, не может быть использована для синтеза необходимых веществ. При недостатке Б. в почве в неё вносят борные удобрения (см. Микроудобрения ). В биогеохимических провинциях с избытком Б. в почве (например, в Северо-Западном Казахстане) возникают морфологические изменения и заболевания растений, вызываемые накоплением Б., — гигантизм, карликовость, нарушение точек роста и др. На почвах с интенсивным борным засолением встречаются участки, лишённые растительности, «плешины», — один из поисковых признаков месторождения Б. Значение Б. в организме животных пока не выяснено. У человека и животных (овец, верблюдов) при питании растениями с избыточным содержанием Б. (60—600 мг/кг сухого вещества и более) нарушается обмен веществ (в частности, активность протеолитических ферментов) и появляется эндемическое заболевание желудочно-кишечного тракта — борный энтерит.
Лит.: Скок Дж., функция бора в растительной клетке, в кн.: Микроэлементы, пер. с англ., М., 1962; Ковальский В. В., Ананичев А. В., Шахова И. К., Борная биогеохимическая провинция Северо-Западного Казахстана, «Агрохимия», 1965, № 11.
В. В. Ковальский.
Рисунок к ст. Бор (химич. элемент).
Бор чёрный
Бор чёрный, чрезвычайный налог, чаще всего собиравшийся великим князем московским в Новгородской земле в связи с необходимостью платить увеличенный «выход» в Золотую Орду . Б. ч. брался «с сохи по гривне» и с промыслов, причём к сохе , как единице обложения, приравнивались чан кожевнический, невод, лавка, кузница, а ладья и црен (большая сковорода для вываривания соли) — к 2 сохам.
Бора карбид
Бо'ра карби'д , B4 C (правильнее B12 C3 ), соединение бора с углеродом. Образуется при взаимодействии бора или борного ангидрида с углём при t выше 2000 °С. Чёрные блестящие кристаллы, плотность 2,52 г/см3 , температура плавления 2360 °С. На воздухе устойчив до 1000 °С, не реагирует с кислотами, но разлагается щелочами. По твёрдости превосходит корунд Al2 O3 , карборунд SiC и уступает лишь алмазу и боразону (см. Бора нитрид ). Используется как абразивный и шлифующий материал (см. Карбиды , Твёрдые сплавы ), как полупроводник (см. Полупроводниковые материалы ), а также в ядерной технике как нейтронопоглощающий материал.
Бора магнетон
Бо'ра магнето'н , единица элементарного магнитного момента, равная собственному (спиновому) магнитному моменту электрона. Названа в честь Н. Бора . Б. м. mВ =(9,2732 ± 0,0006)´10-24 дж/тл = (9,2732 ± 0,0006)´10-21 эрг/гс (см. Магнетон ).
Бора нитрид
Бо'ра нитри'д, BN, соединение бора с азотом. Б. н. получают из элементов при t выше 2000°С или при нагревании смеси B2 O3 с восстановителями (углём, магнием) в атмосфере аммиака; при этом образуется обычная a-форма BN — белый, похожий на тальк порошок, по кристаллической структуре подобный графиту. При давлениях выше 6200 Мн/м2 (62 000 кгс/см2 ) и температурах выше 1350°С в присутствии катализаторов (щелочных и щёлочноземельных металлов) графитоподобная гексагональная a-форма превращается в кубическую алмазоподобную (b-форму (боразон), резко отличающуюся по свойствам. В частности, твёрдость боразона (10 по минералогической шкале) приближается к твёрдости алмаза. В то же время боразон гораздо более устойчив при высоких температурах. Обычный (графитоподобный) Б. н. при комнатной температуре химически инертен и реагирует лишь с фтором (давая BF3 и N2 ) и с HF (образуя NH4 BF4 ); горячие растворы щелочей разлагают его с выделением NH3 . Химическая стойкость боразона значительно выше. Из Б. н. изготовляют высокоогнеупорные материалы, полупроводники, диэлектрики, поглотители нейтронов; a-форма служит сухой смазкой в подшипниках; боразон применяют в производстве сверхтвёрдых абразивных материалов.
Лит.: Самсонов Г. В. и Портной К. И., Сплавы на основе тугоплавких соединений, М., 1961; Шмарцев Ю. В., Валов Ю. А., Борщевский А. С., Тугоплавкие алмазоподобные полупроводники, М., 1964; Ниденцу К., Даусон Д., Химия боразотных соединений, пер. с англ., М., 1968.
В. Л. Василевский.
Бора постулаты
Бо'ра постула'ты, основные допущения, которые ввёл датский физик Н. Бор (1913) для объяснения устойчивости атома. Б. п. легли в основу теории атома Бора, явившейся предшественницей квантовой механики (см. Атомная физика ).
Бора радиус
Бо'ра ра'диус, радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода, согласно теории атома Н. Бора ; обозначается символом a0 или a . Б. р. равен (5,29167±0,00007)´10-9 см = 0,529 Å; выражается через универсальные постоянные: а0 = ћ2 /me2 , где ћ — Планка постоянная , деленная на 2p, m и e — масса и электрический заряд электрона. В квантовой механике Б. р. определяется как расстояние от ядра, на котором с наибольшей вероятностью можно обнаружить электрон в невозбуждённом атоме водорода (см. Атом ).