UNIX: разработка сетевых приложений - Уильям Стивенс
Шрифт:
Интервал:
Закладка:
34 } while (--i > 0);
35 printf("n");
36 }
37 if (ifi->ifi_mtu != 0)
38 printf(" MTU: %dn". ifi->ifi_mtu);
39 if ((sa = ifi->ifi_addr) != NULL)
40 printf(" IP addr: %sn", Sock_ntop_host(sa, sizeof(*sa)));
41 if ((sa = ifi->ifi_brdaddr) != NULL)
42 printf(" broadcast addr, %sn",
43 Sock_ntop_host(sa, sizeof(*sa)));
44 if ((sa = ifi->ifi_dstaddr) != NULL)
45 printf(" destination addr %sn",
46 Sock_ntop_host(sa, sizeof(*sa)));
47 }
48 free_ifi_info(ifihead);
49 exit(0);
59 }
18-47 Программа представляет собой цикл for, в котором один раз вызывается функция get_ifi_info, а затем последовательно перебираются все возвращаемые структуры ifi_info.
20-36 Выводятся все имена интерфейсов и флаги. Если длина аппаратного адреса больше нуля, он выводится в виде шестнадцатеричного числа (наша функция get_ifi_info возвращает нулевую длину ifi_hlen, если адрес недоступен).
37-46 Выводится MTU и те IP-адреса, которые были возвращены.
Если мы запустим эту программу на нашем узле macosx (см. рис. 1.7), то получим следующий результат:
macosx % prifinfo inet4 0
lo0: <UP MCAST LOOP >
MTU: 16384
IP addr: 127.0.0.1
en1: <UP BCAST MCAST >
MTU: 1500
IP addr: 172.24.37.78
broadcast addr: 172.24.37.95
Первый аргумент командной строки inet4 задает адрес IPv4, а второй, нулевой аргумент указывает, что не должно возвращаться никаких псевдонимов, или альтернативных имен (альтернативные имена IP-адресов мы описываем в разделе А.4). Обратите внимание, что в MacOS X аппаратный адрес интерфейса Ethernet недоступен.
Если мы добавим к интерфейсу Ethernet (en1) три альтернативных имени адреса с идентификаторами узла 79, 80 и 81 и изменим второй аргумент командной строки на 1, то получим:
macosx % prifinfo inet4 1
lo0: <UP MCAST LOOP >
MTU: 16384
IP addr: 127.0.0.1
en1: <UP BCAST MCAST >
MTU: 1500
IP addr: 172.24.37.78 первичный IP-адрес
broadcast addr: 172.24.37.95
en1: <UP BCAST MCAST >
MTU: 1500
IP addr: 172.24.37.79 первый псевдоним
broadcast addr: 172.24.37.95
en1: <UP BCAST MCAST >
MTU: 1500
IP addr: 172 24.37.80 второй псевдоним
broadcast addr: 172.24 37.95
en1: <UP BCAST MCAST >
MTU: 1500
IP addr: 172 24.37.81 третий псевдоним
broadcast addr: 172.24.37 95
Если мы запустим ту же программу под FreeBSD, используя реализацию функции get_ifi_info, приведенную в листинге 18.9 (которая может легко получить аппаратный адрес), то получим:
freebsd4 % prifinfo inet4 1
de0: <UP BCAST MCAST >
0:80:c8:2b:d9:28
IP addr: 135.197.17.100
broadcast addr: 135.197.17.255
de1: <UP BCAST MCAST >
0:40:5:42:d6:de
IP addr: 172.24.37.94 основной IP-адрес
broadcast addr: 172.24.37.95
ef0: <UP BCAST MCAST >
0:40:5:42:d6:de
IP addr: 172.24.37.93 псевдоним
broadcast addr: 172.24.37.93
lo0: <UP MCAST LOOP >
IP addr: 127.0.0.1
В этом примере мы указали программе выводить псевдонимы, и мы видим, что один из псевдонимов определен для второго интерфейса Ethernet (de1) с идентификатором узла 93.
Теперь мы покажем нашу реализацию функции get_ifi_info, использующую вызов SIOCGIFCONF функции ioctl. В листинге 17.4 показана первая часть этой функции, получающая от ядра конфигурацию интерфейса.
Листинг 17.4. Выполнение вызова SIOCGIFCONF для получения конфигурации интерфейса
//lib/get_if_info.c
1 #include "unpifi.h"
2 struct ifi_info*
3 get_ifi_info(int family, int doaliases)
4 {
5 struct ifi_info *ifi, *ifihead, **ifipnext;
6 int sockfd, len, lastlen, flags, myflags, idx = 0, hlen = 0;
7 char *ptr, *buf, lastname[IFNAMSIZ], *cptr, *haddr, *sdlname;
8 struct ifconf ifc;
9 struct ifreq *ifr, ifrcopy;
10 struct sockaddr_in *sinptr;
11 struct sockaddr_in6 *sin6ptr;
12 sockfd = Socket(AF_INET, SOCK_DGRAM, 0);
13 lastlen = 0;
14 len = 100 * sizeof(struct ifreq); /* начальное приближение к нужному размеру буфера */
15 for (;;) {
16 buf = Mallос(len);
17 ifc.ifc_len = len;
18 ifc.ifc_buf = buf;
19 if (ioctl(sockfd, SIOCGIFCONF, &ifc) < 0) {
20 if (errno != EINVAL || lastlen != 0)
21 err_sys("ioctl error");
22 } else {
23 if (ifc.ifc_len == lastlen)
24 break; /* успех, значение len не изменилось */
25 lastlen = ifc.ifc_len;
26 }
27 len += 10 * sizeof(struct ifreq); /* приращение */
28 free(buf);
29 }
30 ifihead = NULL;
31 ifipnext = &ifihead;
32 lastname[0] = 0;
33 sdlname = NULL;
Создание сокета Интернета11 Мы создаем сокет UDP, который будет использоваться с функциями ioctl. Может применяться как сокет TCP, так и сокет UDP [128, с. 163].
Выполнение вызова SIOCGIFCONF в цикле12-28 Фундаментальной проблемой, связанной с вызовом SIOCGIFCONF, является то, что некоторые реализации не возвращают ошибку, если буфер слишком мал для хранения полученного результата [128, с. 118–119]. В этом случае результат просто обрезается так, чтобы поместиться в буфер, и функция ioctl возвращает нулевое значение, что соответствует успешному выполнению. Это означает, что единственный способ узнать, достаточно ли велик наш буфер, — сделать вызов, сохранить возвращенную длину, снова сделать вызов с большим размером буфера и сравнить полученную длину со значением, сохраненным из предыдущего вызова. Только если эти две длины одинаковы, наш буфер можно считать достаточно большим.
ПРИМЕЧАНИЕБеркли-реализации не возвращают ошибку, если буфер слишком мал [128, с. 118-199], и результат просто обрезается так, чтобы поместиться в существующий буфер. Solaris 2.5 возвращает ошибку EINVAL, если возвращаемая длина больше или равна длине буфера. Но мы не можем считать вызов успешным, если возвращаемая длина меньше размера буфера, поскольку Беркли-реализации могут возвращать значение, меньшее размера буфера, если часть структуры в него не помещается.
В некоторых реализациях предоставляется вызов SIOCGIFNUM, который возвращает число интерфейсов. Это позволяет приложению перед выполнением вызова SIOCGIFCONF выделить в памяти место для буфера достаточного размера, но такой подход не является широко распространенным.
Выделение в памяти места под буфер фиксированного размера для результата вызова SIOCGIFCONF стало проблемой с ростом Сети, поскольку большие веб-серверы используют много альтернативных адресов для одного интерфейса. Например, в Solaris 2.5 был предел в 256 альтернативных адресов для интерфейса, но в версии 2.6 этот предел вырос до 8192. Обнаружилось, что на сайтах с большим числом альтернативных адресов перестают работать программы с буферами фиксированного размера для размещения информации об интерфейсе. Хотя Solaris возвращает ошибку, если буфер слишком мал, эти программы размещают в памяти буфер фиксированного размера, запускают функцию ioctl, но затем перестают работать при возвращении ошибки.
12-15 Мы динамически размещаем в памяти буфер начиная с размера, достаточного для 100 структур ifreq. Мы также отслеживаем длину, возвращаемую последним вызовом SIOCGIFCONF в lastlen, и инициализируем ее нулем.
19-20 Если функция ioctl возвращает ошибку EINVAL и функция еще не возвращалась успешно (то есть lastlen все еще равно нулю), значит, мы еще не выделили буфер достаточного размера, поэтому мы продолжаем выполнять цикл.
22-23 Если функция ioctl завершается успешно и возвращаемая длина равна lastlen, значит, длина не изменилась (наш буфер имеет достаточный размер), и мы с помощью функции break выходим из цикла, так как у нас имеется вся информация.
26-27 В каждом проходе цикла мы увеличиваем размер буфера для хранения еще 10 структур ifreq.
Инициализация указателей связного списка29-31 Поскольку мы будем возвращать указатель на начало связного списка структур ifi_info, мы используем две переменные ifihead и ifipnext для хранения указателей на список по мере его создания.
Следующая часть нашей функции get_ifi_info, содержащая начало основного цикла, показана в листинге 17.5.
Листинг 17.5. Конфигурация интерфейса процесса
//lib/get_ifi_info.c
34 for (ptr = buf; ptr < buf + ifc.ifc_len; ) {
35 ifr = (struct ifreq*)ptr;
36 #ifdef HAVE_SOCKADDR_SA_LEN
37 len = max(sizeof(struct sockaddr), ifr->ifr_addr.sa_len);
38 #else