Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » 6a. Электродинамика - Ричард Фейнман

6a. Электродинамика - Ричард Фейнман

Читать онлайн 6a. Электродинамика - Ричард Фейнман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 41
Перейти на страницу:

Любопытно, что в этих двух предположениях произведение L0C0равно 12для любой параллельной пары проводников, да­же в том случае, если, скажем, внутренний шестигранный про­водник тянется как-то вдоль эллиптического внешнего. Пока сечение постоянно и между проводниками нет ничего, волны рас­пространяются со скоростью света.

Подобных общих утверждений по поводу характеристиче­ского импеданса сделать нельзя. Для коаксиальной линии он равен

(24.11)

Множитель 1/e0c имеет размерность сопротивления и равен 120p ом. Геометрический фактор In(b/a) только логарифмически зависит от размеров, так что коаксиальная линия (и большинст­во других линий), как правило, обладает характеристическим импедансом порядка 50 ом или что-то около этого, до нескольких сот ом.

§ 2. Прямоугольный волновод

То, о чем мы сейчас будем говорить, на первый взгляд ка­жется поразительным явлением: если из коаксиального кабеля убрать внутреннюю жилу, он все равно будет проводить элект­ромагнитную энергию. Иными словами, на достаточно высокой частоте полая труба действует ничуть не хуже, чем труба, внут­ри которой имеется провод. Связано это с другим таинственным явлением, о котором мы уже знаем,— на высоких частотах ре­зонансный контур (конденсатор с катушкой) можно заменить простой банкой.

Это выглядит очень странно, если пользоваться представле­нием о передающей линии, как о распределенных индуктивности и емкости. Но ведь все мы знаем, что внутри пустой металличе­ской трубы могут распространяться электромагнитные волны. Если труба прямая, через нее все видно! Значит, электромаг­нитные волны через трубу бесспорно проходят. Но мы знаем также, что нет возможности передавать волны низкой частоты (переменный ток или телефонные сигналы) через одну-единственную металлическую трубу. Выходит, электромагнитные вол­ны проходят через нее только тогда, когда их длина волны дос­таточно мала. Поэтому мы рассмотрим предельный случай самых длинных волн (или самых низких частот), способных про­ходить через трубу данного размера. Эту трубу, служащую для прохождения волн, называют волноводом.

Начнем с прямоугольной трубы, ее проще всего анализи­ровать. Сперва изложим все математически, а потом еще раз вернемся назад и рассмотрим вопрос более элементарно. Но этот более элементарный подход легко применить лишь к прямо­угольным трубам. Основные же явления в любой трубе одни и те же, так что математические доводы звучат более основа­тельно.

Поставим перед собой следующий вопрос: какого типа волны могут существовать в прямоугольной трубе? Выберем сначала удобные оси координат: ось z направим вдоль трубы, а оси х и у — вдоль стенок (фиг. 24.3).

Известно, что когда волны света бегут по трубе, их электри­ческое поле поперечно; поэтому начнем с поиска таких решений, в которых Е перпендикулярно z, скажем решений с одной толь­ко y-компонентой Еy (фиг. 24.4,а). Это электрическое поле должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.

Фиг, 24.3. Выбор осей коорди­нат для прямоугольного волно­вода.

Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической сим­метрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.

Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между по­ложительными и отрицательными значениями (фиг. 24.5) и что должно как-то меняться поперек волновода; действительно, ведь оно должно обратиться в нуль на сторонах, параллельных оси у: токи и заряды в проводнике устраиваются всегда так, чтобы на его поверхности не осталось никаких касательных составляющих электрического поля.

Фиг. 24.4. Электрическое поле в волноводе при некотором зна­чении z.

Фиг. 24.3. Выбор осей коорди­нат для прямоугольного волно­вода.

Значит, график Еy от х должен напоминать некоторую дугу (фиг. 24.4,6). Может быть, это найденная нами для полости функция Бесселя? Нет, функции Бесселя появляются только в задачах с цилиндрической сим­метрией. При прямоугольных сечениях волны — это обычные гармонические функции, что-нибудь вроде sinkxx.

Раз мы ищем волны, которые бегут вдоль трубы, то следует ожидать, что поле как функция z будет колебаться между по­ложительными и отрицательными значениями (фиг. 24.5) и что

Фиг. 24,4. Электрическое поле в волноводе при некотором зна­чении z.

Фиг. 24.5. Зависимость поля в волноводе от z.

эти колебания будут бежать вдоль трубы с какой-то скоростью v. Если имеются колебания с определенной частотой w, то надо испытать, может ли волна меняться по z как cos(wt—kzz) или, в более удобной математической форме, как еi(wt-k2z). Такая зависимость от z представляет волну, бегущую со скоростью v=w/kz [см. гл. 29 (вып. 3)].

Значит, можно допустить, что волна в трубе имеет следую­щую математическую форму:

(24.12)

Давайте-ка поглядим, можно ли при таком допущении удов­летворить правильным уравнениям поля. Во-первых, электри­ческое поле не должно иметь составляющих, касательных к про­воднику. Для этого наше поле подходит; вверху и внизу оно на­правлено поперек стенок, а с боков равно нулю. Впрочем, для последнего необходимо, чтобы полволны sin kxx как раз укла­дывалось на всей ширине волновода, т. е. чтобы было

(24.13)

Это условие определяет kx. Есть и иные возможности, например kxa=2p, Зp, ... или в общем случае

(24.14)

где n — целое. Все они представляют различные сложные рас­положения полей, но мы дальше будем говорить о самом прос­том, когда kx=p/a, a a — внутренняя ширина трубы.

Далее, дивергенция Е в пустом пространстве внутри трубы должна быть равна нулю, потому что в трубе нет зарядов. У нашего Е есть только y-компонента, но по у она не меняется, так что действительно V·Е=0.

Наконец, наше электрическое поле должно согласовываться с остальными уравнениями Максвелла для пустого пространст­ва внутри трубы. Это все равно, что потребовать, чтобы оно удовлетворяло волновому уравнению

(24.15)

Нам надо проверить, подойдет ли сюда выбранная нами форма (24.12). Вторая производная Еy по х просто равна —k2хЕу. Вторая производная по у равна нулю, потому что от у ничего не зависит. Вторая производная по z есть —k2zEy, а вторая про­изводная по t это —w2Еy . Тогда уравнение (24.15) утверждает, что

Если Еyне обращается всюду в нуль (этот случай нас не очень интересует), то это уравнение выполняется всегда, если

(24.16)

Число kxмы уже закрепили, так что это уравнение говорит нам, что волны предположенного нами типа возможны лишь тогда, когда kzсвязано с частотой w условием (24.16), т. е. когда

(24.17)

Волны, которые мы описали, распространяются в направлении z с таким значением kz.

Волновое число kz, которое мы получили из (24.17), дает нам при данной частоте w скорость, с которой бегут вдоль трубы узлы волны. Фазовая скорость равна

(24.18)

Вспомните теперь, что длина l, бегущей волны дается форму­лой l=2pv/w, так что kzтакже равняется 2p/lg, где lg длина волны осцилляции в направлении z — «длина волны в волново­де». Длина волны в волноводе, конечно, отличается от длины электромагнитных волн той же частоты, но в пустом простран­стве. Если длину волны в пустом пространстве обозначить l0 (что равно 2pс/w), то (24.17) можно переписать в таком виде:

(24.19)

Фиг. 24.6. Магнитное по­ле в волноводе.

Кроме электриче­ских полей, существуют и магнитные поля, кото­рые тоже движутся вол­нообразно. Мы не будем сейчас заниматься выво­дом выражений для них. Ведь c2СXВ = dE/dt, и линии В циркулируют вокруг областей, где dE/dt — наибольшее, т. е. на полпути между максимумом и миниму­мом Е. Петли В лежат параллельно плоскости xz и между гребнями и впадинами Е (фиг. 24.6).

1 ... 10 11 12 13 14 15 16 17 18 ... 41
Перейти на страницу:
Тут вы можете бесплатно читать книгу 6a. Электродинамика - Ричард Фейнман.
Комментарии