Солнечные элементы - Марк Михайлович Колтун
Шрифт:
Интервал:
Закладка:
Это уравнение можно записать в более удобном для практического использования виде:
I= Iф-I0(exp q(U+IRп/АКТ)-1) U+ IRn∕ Rш
что позволяет построить эквивалентную и измерительную схемы солнечного элемента (рис. 2.8).
Расчет вольт-амперных характеристик по последней формуле позволил наглядно представить влияние последовательного и шунтирующего сопротивлений на свойства солнечного элемента. Результаты этих расчетов приведены на рис. 2.9. Выходная мощность Р, снимаемая с 1 см2 солнечного элемента, может быть оценена из соотношений
P=(IнUн)max=ξIK.3Ux.x,
где величина ξ, называемая коэффициентом заполнения вольт-амперной характеристики, показывает степень приближения формы вольт-амперной характеристики к прямоугольной: ζ≃0,8–0,9 означает получение элементов с высокой выходной мощностью. У современных кремниевых солнечных элементов коэффициент ζ обычно составляет 0,75—0,8. Уменьшение шунтирующего сопротивления от бесконечно большого до столь малого, как 100 Ом, сравнительно мало влияет на форму вольт-амперной характеристики (см. рис. 2.9) и, следовательно, на выходную мощность солнечного элемента. В то же время небольшие изменения последовательного сопротивления, например от 1 до 5 Ом, приводят к резкому ухудшению формы вольт-амперной характеристики и значительному снижению выходной мощности.
Рис. 2.8. Эквивалентная (а) и измерительная (б) электрические схемы солнечного элемента
Рис. 2.9. Расчетные вольт-амперные характеристики солнечных элементов для различных сочетаний Rп и Rш (а) и для разных Rп при Rш = ∞ (б) Iф = 0,1 А; I0 = 10-9 A; q/kT = 40 В-1)
1 — Rп = 5 Ом, Rш = 100; 2 — Rп = 5, Rш = ∞; 3 — Rп = 0, Rш = ∞, 4 — Rп = 0, Rш = ∞; 5—11 — Rп = 0; 1; 2; 3,5; 5; 10 и 20 Ом соответственно
Как световая, так и темновая вольт-амперные характеристики солнечного элемента могут быть исследованы еще более детально. При этом для ряда элементов часто обнаруживается, что в зависимости от уровня напряжения механизм протекания обратного тока насыщения через p-n-переход меняется. Как правило, этот ток представляет сумму двух токов. В связи с этим предложено записывать уравнение вольт-амперной характеристики солнечного элемента в следующем виде:
I = I01(exp (q/AKT U) -1)+ I02(exp q/AKT U -1) — Iф,
где Io1 — обратный ток насыщения, определяемый диффузионным механизмом протекания тока через тонкий p-n-переход; I02 — обратный ток насыщения, возникающий вследствие рекомбинации в области p-n-перехода, при этом обычно коэффициент А=2.
В настоящее время разработан ряд достаточно точных методик, позволяющих по измеренным темновым и световым вольт-амперным характеристикам солнечных элементов рассчитать значения I0, Rп, Rш, коэффициента А и выявить тем самым физические процессы, приводящие к недостаточно высокой эффективности солнечных элементов из определенного полупроводникового вещества.
Pис 2.10. Типичная вольт-амперная характеристика современного кремниевого солнечного элемента при измерении на имитаторе внеатмосферного Солнца
1 — световая; 2 — темновая
На рис. 2.10 представлена типичная вольт-амперная характеристика: световая (измеренная на имитаторе внеатмосферного Солнца) и темновая (измеренная с приложением внешнего смещения в темноте в прямом — IV квадрант и обратном — II квадрант направлениях). Часть световой характеристики, расположенной в I квадранте, и ее продолжение (IV квадрант) представляют собой прямую линию. Наклон этой прямой к оси токов характеризует последовательное сопротивление солнечного элемента
Rп = ΔU′пр.c/∆I′пp. с,
где ΔU′пр.c и ∆I′пp. с. измеряются в области, близкой к Iнз.
Часть характеристики в I квадранте и ее продолжение (II квадрант) тоже являются прямой линией. Наклон ее к оси напряжений характеризует собой шунтирующее сопротивление солнечного элемента
Rш = ΔU′пр.c/∆i′пp. с
где ΔU′пр.c и ∆i′пp. с измеряются в области, близкой к Iнз·
В связи с тем, что на световой вольт-амперной характеристике наклон прямой около точки Iнз измерить трудно, определение Rш обычно проводят по наклону темновой вольт-амперной характеристики (штриховая кривая во II квадранте):
Rш=ΔUобр/ΔIобр.
Построение темновой характеристики позволяет также найти обратный ток насыщения I0. Отрезок на оси ординат от начала координат до точки пересечения с продолжением линейного участка обратной ветви темновой характеристики дает значение I0.
Поскольку, однако, p-n-переход солнечного элемента в рабочем режиме включен в прямом направлении (воздействие светового излучения, появление благодаря ему избыточного количества неравновесных носителей в областях полупроводника по обе стороны p-n-перехода