Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - Микель Альберти

Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - Микель Альберти

Читать онлайн Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - Микель Альберти

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 10 11 12 13 14 15 16 17 18 ... 26
Перейти на страницу:

Для того чтобы рассмотреть интересующее нас явление, объект или процесс с точки зрения математики, нужно задать объективные вопросы, ответы на которые будут определяться не нашими предпочтениями, вкусами или соображениями удобства, а требованиями четкости и измеримости. Так будет сделан первый выбор, касающийся точки зрения, которую следует принять.

Каждый день перед зеркалом

Первое, что мы делаем после пробуждения утром, — это идем в ванную, чтобы привести себя в порядок. Мы смотримся в зеркало, когда умываемся, бреемся, накладываем макияж, стрижемся. Мы смотримся в зеркало каждый день. Чего мы хотим от него? Совсем немногого: мы всего лишь хотим увидеть в нем свое лицо полностью. После завтрака и перед тем, как закрыть за собой дверь и отправиться по делам, мы мельком смотрим в зеркало, чтобы проверить, все ли в порядке. Чего мы хотим от зеркала на этот раз? Чтобы мы отразились в нем в полный рост.

Сколько раз мы совершали эти действия и сколько раз мы задавались вопросом, какие размеры должно иметь зеркало, чтобы в нем полностью отразилось наше лицо или мы сами в полный рост? Мы задаемся этим вопросом крайне редко, если вообще когда-нибудь думаем об этом. Представьте, что вы стоите перед зеркалом, в котором вы отражаетесь в полный рост. Какой должна быть минимальная высота такого зеркала? Начнем с того, что изобразим эту ситуацию на схеме с помощью точек и отрезков:

Схема показывает, какими должны быть минимальные размеры зеркала. Нужно определить, каким должно быть отношение размеров отражающей поверхности и отражающегося в ней лица. Для этого сделаем схему еще более условной: проведем вспомогательные линии, которые помогут решить задачу, и обозначим основные точки буквами:

Так как отражение R'S' симметрично исходному отрезку RS, и изображение в зеркале расположено на том же расстоянии от зеркала, что и оригинал, но по другую его сторону, получим RX = XR'. Кроме того, RX = RR'/2.

Помимо этого, треугольники OAY и OR'О' подобны, так как два их угла равны. Аналогично для треугольников OYB и OO'S'. Так как RX = RR'/2, коэффициент подобия этих треугольников равен 2, поэтому AY R'O'/2 = RO/2, а также YB = O'S'/2 = OS/2.

Иными словами, АВ AY + YB = RO/2 + OS/2 = (RO + OS)/2 = RS/2, так что высота зеркала должна быть равной минимум половине высоты лица. Высота, на которой следует повесить зеркало, равна BZ = YZ/2, то есть половине расстояния от глаз до подбородка. Аналогично, высота зеркала, в котором мы будем отражаться полностью, должна быть равна половине нашего роста, и такое зеркало следует повесить на высоте, равной половине расстояния от глаз до пола.

Взгляд в сторону горизонта

Выйдя из дома, некоторые из нас имеют счастливую возможность пойти на пляж и насладиться видом горизонта, глядя вдаль, на самый край земли, покуда хватает глаз. Кто-нибудь хоть раз, глядя на горизонт, думал о математике? Как правило, любуясь рассветом или закатом, мы задаемся другими вопросами: мы размышляем о прошлом и будущем, о красоте природы, о рыбаках, которые возвращаются из моря с дневным уловом, о том, что скрывается за линией горизонта, куда неожиданно быстро опускается горящее солнце, озаряющее наши жизни…

Но если мы посмотрим на горизонт взглядом математика, у нас возникнут совсем другие вопросы. Мы заметим, что когда мы наклоняемся, горизонт приближается, когда мы поднимаемся — горизонт отдаляется. Если мы сделаем полный оборот вокруг себя, то увидим, что горизонт круглый, поэтому мореходы в древности считали, что Земля круглая: в море, далеко от берега, они видели вокруг себя лишь круглый горизонт. Какое расстояние отделяет нас от горизонта? Каков его радиус? Какое расстояние отделяет нас от судна, которое виднеется на горизонте?

Это первый шаг, который нужно сделать на пути к математическому творчеству: нужно задаться вопросами о мире, где мы живем, о том, что мы видим или делаем, и ответы на эти вопросы должны выходить за рамки субъективного и стремиться к чему-то объективному. По сути, нужно взглянуть на мир с научной точки зрения.

* * *

ТЕОРЕМА ПИФАГОРА

Треугольник abc прямоугольный <=> с2 = а2 + Ь2.

Это самая известная математическая теорема, которая ежедневно доказывается во множестве школ по всему миру. Однако доказательство, которое обычно приводится в учебниках, принадлежит не Евклиду (доказательство Евклида приведено в предложении 47 книги I «Начал»), а основано на разбиении квадрата на несколько фигур подобно головоломке.

В теореме Пифагора упоминаются площади, однако она традиционно используется для вычисления длин. Всегда доказывается прямая теорема (=>), обратная (<=) теорема не доказывается никогда, однако порой она также находит применение. В «Началах» обратная теорема приведена в следующем, 48-м предложении книги I.

* * *

С точки зрения математики Земля представляет собой сферу радиусом около 6370 километров. Горизонт — это наиболее удаленная часть поверхности планеты, видимая глазом. Создадим геометрическую модель этой ситуации. В ней горизонт определяется положением касательной к окружности.

Пусть Н(х) — расстояние до видимого горизонта, х — наш рост (точнее, расстояние от поверхности земли до уровня глаз), R — радиус Земли. Получим прямо угольный треугольник, для которого можно применить теорему Пифагора:

Горизонт, видимый человеком при х = 1,7 м, находится от него расстоянии Н = 4653,8 м (R = 6370 км).

Можно ли считать решение этой задачи математическим творчеством?

Создали ли мы что-то новое в математике? Мы применили известную теорему и получили формулу, которой ранее не существовало. Это первый, но не единственный и далеко не самый важный итог математического творчества, связанный с горизонтом. Суть творчества в данном случае описывается вопросом: сколько раз мы смотрели на горизонт и не задумывались о том, какое расстояние отделяет нас от него?

На втором плане находится созданная нами геометрическая модель, позволяющая применить математическую теорему. Только при взгляде на ситуацию с математической точки зрения мы представляем Землю как сферу, луч света — как прямую, наше тело — как кратчайшее продолжение радиуса сферы. Кроме того, мы свели трехмерную реальность к модели на плоскости, а сферу — к окружности.

* * *

ВБЛИЗИ ГОРИЗОНТА

В одном из своих произведений писатель Эдуардо Галеано расположил на горизонте утопию:

«Для чего нужна утопия? Она находится на горизонте. Если я подойду к горизонту на десять шагов, он отодвинется на десять шагов от меня. Для этого и нужен горизонт, — чтобы научиться ходить».

С точки зрения математики эта цитата абсолютно верна, так как шаги откладываются на поверхности сферы:

* * *

Циклические узлы

В своей книге «Дух порядка. Исследование психологии декоративных искусств» австрийский историк искусства Эрнст Гомбрих описывает кельтские узлы. Их особенность заключается в том, что нить проходит через все выделенные точки на каждой стороне сетки с квадратными ячейками и возвращается в исходное положение.

Бесконечный узел — это узел, начало и конец которого совпадают:

Кельтские узлы не всегда являются бесконечными, или циклическими:

Возникает вопрос: почему одни узлы бесконечные, а другие — нет? Перед тем как начать поиск ответа, рассмотрим, как строятся такие узлы. Их основой является сетка с квадратными ячейками, на сторонах которых выбирается последовательность точек, через которые проходит нить узла:

За счет этого узлы можно описывать числом вершин на каждой из сторон сетки, через которые проходит нить узла. Первый из улов, представленных выше, — узел 3 x 2, второй — 3 x 3, последний — 6 x 4. Узел 3 x 2 располагается на сетке размером 6 х 4 и проходит через вершины 1–3–3 в горизонтальных рядах и через вершины 1–3 — в вертикальных рядах. Сетка 6 x 4 понимается как (1 + 2·2 + 1) х (1 + 2 + 1). Остальные узлы описываются аналогично. Узел 3 x 3 располагается на сетке 6 х 6 = (1 + 2·2 + 1) х (1 + 2·2 + 1), узел 6 x 4 — на сетке 12 х 8 = (1 + 2·5 + 1) х (1 + 2·3 +1).

1 ... 10 11 12 13 14 15 16 17 18 ... 26
Перейти на страницу:
Тут вы можете бесплатно читать книгу Мир математики. т.20. Творчество в математике. По каким правилам ведутся игры разума - Микель Альберти.
Комментарии