Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Научпоп » Нанонауки. Невидимая революция - Кристиан Жоаким

Нанонауки. Невидимая революция - Кристиан Жоаким

Читать онлайн Нанонауки. Невидимая революция - Кристиан Жоаким

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 37
Перейти на страницу:

Прошло время, и Авирам как-то все-таки обратил внимание на туннельный микроскоп, который уже три года работал в его лаборатории. Ари очень заинтересовала игла этого прибора — надо же, такая тонкая, кончик острия — всего несколько атомов! Вот он, тот самый ультраминиатюризованный электрод для подключения к одной-единственной молекуле, решил Авирам, и поспешил сплотить вокруг себя команду исследователей, сосредоточенных на одной цели: установить контакт между иглой и молекулой. Начали мы с подложки из золота. Потом рассыпали на золотой поверхности молекулы-выключатели, синтезированные Авирамом. Такая поверхность должна быть совершенно ровной, иначе любой заусенец можно принять за молекулу — нашу молекулу. Дело оказалось весьма непростым: иголка дергалась и из-за этого не задерживалась возле молекулы даже на секунду. Времени явно не хватало: даже если электроны и переберутся с иглы на молекулу, электронные схемы, управляющие туннельным микроскопом, просто не успеют засечь сигнал. Тогда мы перенастроили электронику микроскопа на самые скоротечные сигналы. И вспомнили все молитвы и все суеверия: надежда на успех, несмотря ни на что, жила в наших сердцах.

На этот раз и дрейф иглы удалось уменьшить — как бы то ни было, ее кончик продержался над молекулой достаточно долго, чтобы мы успели замерить ее электрические характеристики! Увы, ничего особенного мы не обнаружили — молекула как молекула, а мы-то хотели, чтобы она работала как выключатель. Мы принялись вновь и вновь подводить к ней иглу, менять расположение молекул, но ток не менялся — во всяком случае, совсем не так сильно, как его меняет любой выключатель, даже плохой. Наконец, после самой кропотливой подготовки иглы и медленного повышения напряженности электрического поля между иглой и поверхностью подложки, сила тока вдруг резко возросла! Ток пошел! Выключатель замкнулся. Итак, мы сумели пропустить электрический ток через наш молекулярный выключатель.

Но счастье оказалось мимолетным. То, что мы приняли за замыкание нашего молекулярного прерывателя, было на самом деле атомным коротким замыканием! Понадобилось еще десять лет освоения навыков работы с туннельным микроскопом, да и совершенствования самого микроскопа, чтобы научиться устанавливать электрический контакт между его иглой и одиночной молекулой. Пока что по-иному подключаться к молекуле не получается. И все же в том, хоть и не совсем удачном, опыте мы показали, что туннельный микроскоп может соединить несколько атомов в электрическую цепь. Наш эксперимент вводил молекулярную электронику в эру нанотехнологии и повышал интерес к этой области исследований.

ЧЕЛОВЕК ТРОГАЕТ АТОМ. И ПЕРЕДВИГАЕТ ЕГО!

Столько ученых так долго не верили в возможность подключения одной, и единственной, молекулы! Иначе говоря, они сомневались в том, что можно наладить обмен электронами с молекулой, обосновывая свои сомнения квантовыми свойствами электронов. Электроны подчиняются квантовым законам, следовательно, поведение электронов хоть внутри молекулы, хоть где еще, заведомо случайно (вероятностно). А можно ли управлять случаем? Так что все разговоры об управлении электронами — пустая трата времени. Выходило так, что отцы квантовой механики зло подшутили над экспериментаторами. В самом деле, физические свойства атома, по Шрёдингеру, квантовые, значит, никак нельзя установить местоположение или локализовать волну, ассоциируемую с этим атомом. То есть манипулировать им так, как если бы он был просто частицей твердого тела, невозможно.

Но в 1950-е годы Эрвин Мюллер на автоионном микроскопе (см. Приложение I) впервые получил изображения атома вольфрама, и это достижение сразу же породило раздоры в стане ученых. Иные из них заходили так далеко, что позволяли себе сомневаться в квантовой теории вещества! Другие, напротив, заявляли, что изображения Мюллера — какое-то недоразумение; наверное, его фотокамеры зафиксировали некие паразитные погрешности, а скорее всего это вообще эффекты интерференции.

В начале 1970-х годов ученики Мюллера заставили атом прыгать на игле автоионного микроскопа, для чего они меняли напряженность электрического поля и температуру иглы. И проследили, почти напрямую, на экране траекторию этого атома, который блуждал на поверхности вольфрамовой иглы. Опыт, казалось бы, подводил черту под спорами: итак, вопреки Шрёдингеру удалось локализовать атом. Более того, удалось не только точно указать на место, где этот атом находится, но и увидеть его перемещения! Но не тут-то было.

Споры приутихли только зимой 1989 года, после того как свои труды обнародовал — и сделал это весьма темпераментно — Дональд Эйглер, работавший в исследовательских лабораториях компании IBM в Альмадене, штат Калифорния. До Альмадена Эйглер два года провел в лабораториях компании Bell на восточном побережье США, тех самых лабораториях, где родился транзистор, один из важнейших компонентов — и символов — электроники. А теперь Эйглер захотел построить микроскоп, работающий на основе туннельного эффекта, чтобы поглядеть, как такой редкий газ, как ксенон, взаимодействует с металлической поверхностью. Эйглер уже имел раньше дело с благородными газами: когда ему надо было защитить диссертацию в Калифорнийском университете в Сан-Диего, он воспользовался расхожей методикой обработки металлической поверхности пучками газов — так определяли магнитные свойства металла, но Эйглер попутно собирал сведения об электронах на поверхности металла. В Альмадене Эйглер начал сооружать такой туннельный микроскоп, который и работал бы очень устойчиво, и сохранял бы работоспособность при самых низких температурах. На это у него ушло три года. Когда же микроскоп был готов, Эйглер, вместо того чтобы проецировать на поверхность металла пучок атомов ксенона, разместил эти атомы на поверхности и стал наблюдать за ними и за их взаимодействием с металлической подложкой. Такие редкие газы, как ксенон, называются благородными потому, что они очень устойчивы и при этом практически не вступают в химические реакции с атомами иных элементов. Чтобы атомы ксенона не сбежали с подложки, Дон Эйглер охладил ее до очень низкой температуры.

И вот однажды ночью (когда вибрации здания минимальны — и сотрудники ушли домой, и машины за окном уже не ездят) он увидел изображения — сначала одних атомов, а потом и других и на одном и том же участке металлической поверхности. И хоть иголка микроскопа все равно болталась, всякий раз магнитоскоп после очередного колебания иглы регистрировал новый образ. Затем Эйглер, изучая зарегистрированные изображения, придал потоку изображений большую скорость (это примерно так, как если смотреть кино на повышенной скорости смены кадров) и заметил, что одно изображение атомов «перетекает» в другое и что направление перетекания совпадает с направлением отклонения иглы. Он повторил опыт и увидел, что в зависимости от напряжения, приложенного к игле, и тока, через нее протекающего, изображение получается или тривиальным, не обнаруживающим ничего особенного, или измененным — с шевелящимися атомами. Итак, налицо доказательства того, что не бессонная ночь повинна в смещении атомов. Их движение — не игра случая, но результат усилий экспериментатора. Получается, что атомами можно манипулировать — вопреки всякому ожиданию и наперекор всем квантовым предписаниям. Чтобы доказать свою правоту, Дон Эйглер написал слово «IBM», выложив буквы 35 атомами ксенона. Эта картинка облетела весь мир и ознаменовала рождение нанотехнологии: человек заставил атомы «ходить строем».

Что же случилось под иглой? Уподобим атом ксенона футбольному мячу на поле стадиона. На траве, которая растет на этом поле, мяч неподвижен — его не пускает трава. А когда футболист ставит ногу на мяч, он давит — слегка — на мяч, то есть мяч теперь не пускает бутсу футболиста. Но если футболист уберет ногу, мяч совершит несколько оборотов вокруг своей оси — ногу футболист убрал, но давление внутри мяча осталось. На этом основан прием, который называется «крученый мяч». Если же футболист не уберет ногу, а надавит ею на мяч чуть сильнее, мяч выскользнет из-под ноги и покатится. Вот примерно то же случилось и с атомом ксенона под иглой туннельного микроскопа. Чтобы получить хорошее изображение атома ксенона, не смещая его, иголку надо подвести на расстояние, большее 0,2 нм (нога футболиста над мячом). Если же промежуток между кончиком иглы и атомом меньше 0,2 нм, игла вступает во взаимодействие с атомом и меняет взаимодействие атома с поверхностью подложки. Атом — «в западне», и эта «западня» сдвигается вслед за перемещением иглы туннельного микроскопа.

Дон Эйглер придумал несколько объяснений для поведения атомов металлов и малых молекул: его «молекулярный человечек» ростом в 5 нм состоял из молекул моноксида углерода (угарного газа). Весть про успехи Эйглера дошла до Японии и вызвала у тамошних ученых острую зависть. Директор Hitachi потребовал от своих научных сотрудников научиться писать атомами. Но остроумные японцы, вместо того чтобы выводить буквы на поверхности металла, выставляя на ней атом за атомом, решили снимать атомы, тоже по одному, с поверхности полупроводниковой подложки — буквы выкладывались не из атомов, а из дырок, оставшихся после удаления атомов. На надпись «IBM» японцы ответили целым лозунгом «РЕАСЕ’91 HCRL» — «МИР в 1991-м году — Центральная исследовательская лаборатория фирмы Hitachi».

1 ... 11 12 13 14 15 16 17 18 19 ... 37
Перейти на страницу:
Тут вы можете бесплатно читать книгу Нанонауки. Невидимая революция - Кристиан Жоаким.
Комментарии