Теория статистики - Инесса Бурханова
Шрифт:
Интервал:
Закладка:
Выборка называется многоступенчатой, если отбор совокупности проходит по ступеням, последовательным стадиям, причем каждая ступень, стадия отбора имеет свою единицу отбора. Многофазная выборка – на всех ступенях выборки сохраняется одна и та же единица отбора, но проводится несколько стадий, фаз выборочных обследований, которые различаются между собой широтой программы обследования и объемом выборки.
36. Ошибки выборки
Собственнослучайная выборка – это отбор единиц из всей генеральной совокупности посредством жеребьевки или другим подобным способом. Принципом случайности является то, что на включение или исключение объекта из выборки не может повлиять любой фактор, кроме случая.
Доля выборки – это отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности:
В собственнослучайный отборе заключаются и реализуются основные принципы выборочного статистического наблюдения.
Два основных вида обобщающих показателей, которые используют в выборочном методе – это средняя величина количественного признака и относительная величина альтернативного признака.
Выборочная доля w,или частность, определяется отношением числа единиц, обладающих изучаемым признаком m, к общему числу единиц выборочной совокупности п.
Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки.
Ошибка выборки, ее еще называют ошибкой репрезентативности, представляет собой разность соответствующих выборочных и генеральных характеристик:
1) для средней количественного признака: ех = х – х;
2) для доли (альтернативного признака): ew = х – p.
Только выборочным наблюдениям присуща ошибка выборки.
Выборочная средняя и выборочная доля – это
случайные величины, принимающие различные значения в зависимости от единиц изучаемой статистической совокупности, которые попали в выборку. Соответственно ошибки выборки – тоже случайные величины и также могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок – среднюю ошибку выборки.
Средняя ошибка выборки определяется объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Средняя ошибка выборки зависит от степени варьирования изучаемого признака.
Механическая выборка – это отбор единиц в выборочную совокупность из генеральной, которая разбита по нейтральному признаку на равные группы; производится так, что из каждой такой группы в выборку отбирается лишь одна единица.
При механическом отборе единицы изучаемой статистической совокупности предварительно располагают в определенном порядке, после чего отбирают заданное число единиц механически через определенный интервал.
37. Понятия и виды рядаов динамики
Динамическими рядами в статистической науке называют статистические данные, характеризующие изменения явлений во времени, они строятся для выявления и изучения возникающих закономерностей в развитии явлений в различных сферах жизни общества.
В рядах динамики имеются два главных элемента:
1) показатель времени (t);
2) уровни развития изучаемого явления (у).
В рядах динамики в качестве показателей времени могут выступать определенные даты времени или отдельные периоды.
Уровни, образующие ряды динамики, определяют количественную оценку развития во времени исследуемого явления или процесса, они могут выражаться относительными, абсолютными либо средними величинами. Уровни рядов динамики в зависимости от характера исследуемого явления могут относиться к определенным датам времени или к отдельным периодам.
Динамический ряд состоит из сопоставимых статистических показателей. Для правильности построения динамических рядов необходимо, чтобы состав исследуемой статистической совокупности относился к одной и той же территории, к одному и тому же кругу объектов и был рассчитан по одной и той же методологии.
Данные динамического ряда должны выражаться в одних и тех же единицах измерения, а промежутки времени между значениями ряда должны быть по возможности одинаковыми.
Ряды динамики подразделяются на моментные, интервальные и ряды средних величин.
Моментные ряды динамики отображают состояние исследуемых процессов на определенные даты времени.
Интервальные ряды динамики отображают итоги развития или функционирования исследуемых процессов за отдельные периоды времени.
Для характеристики процесса за определенный период рассчитывают средний уровень из всех членов динамического ряда.
Способы его расчета зависят от вида динамического ряда. Для интервальных рядов средняя рассчитывается по формуле средней арифметической, причем при равных интервалах применяется средняя арифметическая простая, а при неравных – средняя арифметическая взвешенная.
Для нахождения средних значений моментного ряда применяют среднюю хронологическую.
Средняя хронологическая моментного ряда равна сумме всех уровней ряда, поделенной на число членов ряда без одного, причем первый и последний члены ряда берутся в половинном размере.
Если интервалы между периодами не равны, то применяется средняя арифметическая взвешенная, а в качестве весов берутся отрезки времени между датами, к которым относятся парные средние смежных значений уровня.
38. Основные показатели анализа динамических рядов
Для анализа динамических рядов в статистике используются такие показатели:
1) уровнем ряда является абсолютная величина каждого члена динамического ряда. Все уровни ряда характеризуют его динамику. Различают начальный, конечный и средний уровни ряда. Начальный уровень – величина первого члена ряда. Конечный уровень – величина последнего члена ряда, средний уровень – средняя из всех значений динамического ряда;
2) абсолютный прирост – характеризует размер увеличения или уменьшения изучаемого явления за определенный период времени, определяется как разность между данным уровнем и предыдущим или первоначальным. Уровень, который сравнивается, называется текущим, а уровень, с которым делается сопоставление, именуется базисным, так как он является базой для сравнения. Если каждый уровень ряда сравнивается с предыдущим, то получают цепные показатели, а если все уровни ряда сравниваются с одним и тем же первоначальным уровнем, то полученные показатели называются базисными;