Категории
Самые читаемые
PochitayKnigi » Бизнес » О бизнесе популярно » Одураченные случайностью - Нассим Талеб

Одураченные случайностью - Нассим Талеб

Читать онлайн Одураченные случайностью - Нассим Талеб

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 64
Перейти на страницу:

Стохастические процессы относятся к динамике событий, разворачивающихся во времени. Стохастический -причудливое греческое название для случайного. Эта отрасль теории вероятности интересуется изучением развития последовательных случайных событий - можно даже называть это математикой истории. Ключ к процессу в том, что он заключает в себе время.

Что такое генератор Монте-Карло? Вообразите, что вы можете смоделировать совершенное колесо рулетки на вашем чердаке без того, чтобы обращаться за помощью к плотнику. Компьютерные программы могут моделировать что угодно. Они даже лучше (и дешевле), чем колесо рулетки, сделанное плотником, которое может "любить" какой-либо номер больше, чем другие, вследствие возможной неровности в своей конструкции или пола вашего чердака. Такая неровность называется уклоном.

Моделирование методом Монте-Карло больше всего похоже на игрушку. Можно производить тысячи, возможно, миллионы случайных выборочных траекторий, и смотреть на превалирующие характеристики их некоторых особенностей. Компьютер -незаменимый инструмент в таких занятиях. Очаровательная ссылка на Монте-Карло подчеркивает метафору моделирования случайных событий в манере виртуального казино. Один набор условий, которые, как считается, преобладают в действительности, запускает коллекцию моделей возможных событий. Даже не имея математической подготовки, мы можем применить моделирование методом Монте-Карло для 18-летнего христианского ливанца, последовательно играющего в Русскую рулетку на данную сумму, и видеть, сколько из этих попыток кончаются обогащением, или сколько времени требуется, в среднем, для того чтобы увидеть его некролог. Мы можем заменить барабан револьвера, чтобы он содержал 500 пулеприемников вместо шести, что, очевидно, уменьшило бы вероятность смерти, и посмотреть результаты.

Методы моделирования Монте-Карло стали впервые применяться в военной физике в лаборатории Лос-Аламоса во время подготовки бомбы. Они стали популярными в финансовой математике в 1980-ых, особенно в теориях случайных блужданий цены актива. Ясно, что для примера русской рулетки не требуется такого мощного аппарата, но многие проблемы, особенно ситуации сходства с реальной жизнью, нуждаются с силе генератора Монте-Карло.

Математика Монте-Карло

Это - факт, что "истинные" математики не любят методы Монте-Карло. Они полагают, что такие методы крадут у нас изящество и элегантность математики. Они называют это "животной силой", поскольку мы можем заменить большую часть математических знаний симулятором Монте-Карло (и другими вычислительными уловками). Например, без формального знания геометрии можно вычислять таинственное, почти мистическое число ?1. Как? Просто вписав круг внутрь квадрата и "стреляя" случайными пулями в получившуюся картину. При этом надо предположить равные вероятности для попадания в любую точку картины (что называется равномерным распределением). Отношение пуль внутри круга к количеству пуль внутри и вне круга, даст значение мистического р!, с почти бесконечной точностью. Ясно, что это - не эффективное использование компьютера, поскольку р! может быть вычислено аналитически, то есть в математической форме, но метод может давать некоторым пользователям большее понимание предмета, чем строки уравнений. Умственные способности и интуиция некоторых людей ориентированы таким способом, что они более восприимчивы к получению знаний именно в такой манере (я считаю себя одним из них). Компьютер возможно, не естественен для нашего человеческого мозга, как, впрочем, и математика.

Я - не "урожденный" математик, то есть я говорю на языке математики не как на родном языке, а со следами иностранного акцента. Сами по себе, математические изыски меня не интересуют, только их применение, в то время, как математик интересовался бы улучшением математики (через теоремы и доказательства). Я оказался неспособным к концентрации на расшифровке отдельного уравнения, если я не мотивирован реальной проблемой (и толикой жадности). Поэтому большая часть из того, что я знаю, пришла от торговли производными инструментами - опционы подтолкнули меня, к изучению вероятностной математики. Многие маниакальные игроки имели бы посредственные знания, если бы не приобрели замечательные навыки подсчета карт, благодаря своей страстной жадности.

Другую аналогию можно провести с грамматикой, которая часто более понятна и менее скучна, чем математика. Есть те, кто заинтересован грамматикой для пользы грамматики, и те, кто заинтересован в отсутствии ошибок при письме. Это как с "квантами" - подобно физикам, мы больше заинтересованы в использовании математического инструмента, чем в самом инструменте непосредственно. Математиками рождаются, но никогда не делаются. Физики и кванты также. Я не забочусь об "элегантности" и "качестве" математики, которую я использую, пока я могу получить правильный вывод. Я обращаюсь к помощи методов Монте-Карло всякий раз, когда это возможно. Они могут сделать работу и они, также, гораздо более обучающие, что позволяет мне использовать их в этой книге в качестве примеров.

Действительно, вероятность - это интроспективная область вопросов, поскольку она затрагивает более, чем одну науку, в особенности мать всех наук. Невозможно оценить качество знания, которое мы накапливаем без того, чтобы допустить долю случайности в манере, какой оно получено и нейтрализации аргументов в пользу случайного совпадения, которое могло просочиться при его строительстве. В науке, вероятность и информация рассматриваются в одинаковой манере. Буквально каждый большой мыслитель интересовался этим и большинство из них одержимо. Два самых больших ума, по моему мнению, Эйнштейн и Кейнс, оба начали свои интеллектуальные путешествия с этого. Эйнштейн написал свою главную работу в 1905, в которой он, почти первым, исследовал в вероятностных терминах последовательность случайных событий, а именно, эволюцию задержанных частиц в стационарной жидкости. Его работа по теории броуновского движения может использоваться в качестве основы для теорий случайных блужданий, используемых в финансовом моделировании. Что касается Кейнса, то для образованного человека, он - не политический экономист, на которого любят указывать, одетые в твид, левые, но автор авторитетного, интроспективного и мощного Трактата о вероятности. Прежде, чем окунуться в темную область политической экономии, Кейнс был вероятностником. У него были и другие интересные признаки, (он "взорвал" торговлю на своем счету после достижения чрезмерного богатства - понимание людьми вероятности, не переходит в их поведение).

1 ... 11 12 13 14 15 16 17 18 19 ... 64
Перейти на страницу:
Тут вы можете бесплатно читать книгу Одураченные случайностью - Нассим Талеб.
Комментарии