Категории
Самые читаемые
PochitayKnigi » Разная литература » Газеты и журналы » Интернет-журнал 'Домашняя лаборатория', 2007 №10 - Журнал «Домашняя лаборатория»

Интернет-журнал 'Домашняя лаборатория', 2007 №10 - Журнал «Домашняя лаборатория»

Читать онлайн Интернет-журнал 'Домашняя лаборатория', 2007 №10 - Журнал «Домашняя лаборатория»

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 11 12 13 14 15 16 17 18 19 ... 188
Перейти на страницу:
к биологии.

Эйген выдвинул концепцию образования упорядоченных макромолекул из неупорядоченного вещества на основе матричной репродукции естественного отбора. Он начинает с того, что дарвиновский принцип естественного отбора (ЕО) — единственный понятный нам способ создания новой информации (это физическая величина, отражающая меру упорядоченности системы). Если имеется система самовоспроизводящихся единиц, которые строятся из материала, поступающего в ограниченном количестве из единого источника, то в ней с неизбежностью возникает конкуренция и, как ее следствие, ЕО. Эволюционное поведение, управляемое ЕО, основано на самовоспроизведении с "информационным шумом" (в случае эволюции биологических видов роль "шума" выполняют мутации). Наличия этих двух физических свойств достаточно, чтобы стало принципиально возможным возникновение системы с прогрессирующей степенью сложности.

В этом плане предшественником Эйгена является биохимик Г.Кастлер (1966), проанализировавший поведение системы нуклеиновых кислот в рамках теории информации. Он пришел к выводу, что новая информация возникает в системе, только если в ней происходит случайный выбор ("методом тыка") с последующим запоминанием его результатов, а не целенаправленный отбор наилучшего варианта. В последнем случае можно говорить лишь о реализации той информации, что заложена в систему изначально, то есть о выделении уже имеющейся информации из "шума". Сама же возможность возникновения "новизны" (т. е. акта творчества) определяется свойствами информации как таковой: как было показано А.А. Ляпуновым (1965), на нее не распространяются законы сохранения, т. е. информация, в отличие от материи и энергии, может быть заново создана (и, соответственно, может быть и безвозвратно утрачена).

Говоря об усложнении системы, необходимо упомянуть выводы еще одного основоположника кибернетики, Дж. фон Неймана (1960), решавшего проблему самовоспроизведения автоматов. Оказалось, способность к самовоспроизведению принципиально зависит от сложности организации. На низшем уровне сложность является вырождающейся, т. е. каждый автомат способен воспроизводит лишь менее сложные автоматы. Существует, однако, вполне определенный критический уровень сложности, начиная с которого эта склонность к вырождению перестает быть всеобщей: "Сложность, точно так же, как и структура организмов, ниже некого минимального уровня является вырождающейся, а выше этого уровня становится самоподдерживающейся или даже может расти".

Итак, Эйгену "всего-навсего" осталось найти реальный класс химических реакций, компоненты которых вели бы себя подобно дарвиновским видам, т. е. обладали бы способностью "отбираться" и, соответственно, эволюционировать в сторону увеличения сложности организации. Именно такими свойствами, как выяснилось, и обладают нелинейные автокаталитические цепи, названные им гиперциклами. Здесь необходимо дать некоторые пояснения.

Простейшим случаем каталитической реакции является превращение исходного вещества (субстрат — S) в конечное (продукт — Р) при участии единственного фермента (Е); уже этот механизм требует по меньшей мере трехчленного цикла, который называется реакционным (рисунок 14, а). Существуют, однако, и гораздо более сложные реакционные циклы. Таков, например, цикл Кребса — 12-членный цикл, лежащий в основе клеточного дыхания: он катализирует превращение молекулы двухатомной уксусной кислоты (в форме ацетил-кофермента а — СН3СО Коа) в 2 молекулы СО2 и 8 атомов Н (рисунок 14, б). Другой пример — углеродный цикл Бете-Вайцзекера, обеспечивающий светимость Солнца за счет превращения четырех атомов водорода 1Н в атом гелия 4He (рисунок 14, в). Несмотря на серьезнейшие различия между этими реакциями (первая является химической, а вторая — ядерной), они обладают фундаментальным сходством: в обеих высокоэнергетическое вещество превращается в продукты, бедные энергией, при сохранении — т. е. циклическом воспроизведении — промежуточных компонентов (интермедиатов).

РИСУНОК 14. Реакционные циклы (абстрактный трехчленный цикл, цикл Кребса и цикл Бете-Вайцзекера); каталитический цикл; гиперцикл.

Следующий за реакционным циклом уровень организации представляет собой каталитический цикл, в котором некоторые — или все — интермедиаты сами являются катализаторами для одной из последующих реакций. Каждый из них (Ei+i) образуется из высокоэнергетического субстрата (S) при каталитической поддержке от предыдущего интермедиата (Ei) (рисунок 14, г). Таким образом, каталитический цикл как целое эквивалентен автокатализатору.

Если же такие автокаталитические (т. е. самовоспроизводящиеся) единицы оказываются, в свою очередь, сочленены между собой посредством циклической связи, то возникает каталитический гиперцикл. Гиперцикл, таким образом, основан на нелинейном автокатализе — автокатализе как минимум второго порядка, и представляет собой следующий, более высокий уровень в иерархии автокаталитических систем. Он состоит из самоинструктирующихся единиц (Ii) с двойными каталитическими функциями: в качестве автокатализатора интермедиат Ii способен инструктировать свое собственное воспроизведение, и при этом катализирует воспроизведение из высокоэнеогетического субстрата (S) следующего в цепи интермедиата (Ii+1) (рисунок 14, д).

Гиперциклы (одним из простейших примеров которых является размножение РНК-содержащего вируса в бактериальной клетке) обладают рядом уникальных свойств, порождающих дарвиновское поведение системы. Гиперцикл конкурирует (и даже более ожесточенно, чем дарвиновские виды) с любой самовоспроизводящейся единицей, не являющейся его членом; он не может стабильно сосуществовать и с другими гиперциклами — если только не объединен с ними в автокаталитический цикл следующего, более высокого, порядка. Состоя из самостоятельных самовоспроизводящихся единиц (что гарантирует сохранение фиксированного количества информации, передающейся от "предков" к "потомкам"), он обладает и интегрирующими свойствами. Таким образом, гиперцикл объединяет эти единицы в систему, способную к согласованной эволюции, где преимущества одного индивида могут использоваться всеми ее членами, причем система как целое продолжает интенсивно конкурировать с любой единицей иного состава.

Итак, именно гиперцикл (который сам по себе — еще чистая химия) является тем самым критическим уровнем, начиная с которого сложность неймановского "самовоспроизводящегося автомата" перестает быть вырождающейся. Эта концепция, в частности, вполне удовлетворительно описывает возникновение на основе взаимного катализа системы "нуклеиновая кислота-белок" — решающее событие в процессе возникновения жизни на Земле. Вместе с тем, сам Эйген подчеркивает, что в ходе реальной эволюции гиперцикл вполне мог "вымереть" — после того, как ферментные системы следующего поколения (с более высокой точностью репродукции) сумели индивидуализировать интегральную систему в форме клетки.

Однако на процесс возникновения жизни можно посмотреть и с несколько иной позиции, не биохимической, а геохимической, как это делает, например, А.С. Раутиан (1995). Мы уже говорили о том, что с общепланетарной точки зрения жизнь — это способ упорядочения и стабилизации геохимических круговоротов; откуда же берется сам геохимический круговорот?

Открытый космос холоден (лишь на 4° теплее абсолютного нуля) потому, что концентрация вещества в нем ничтожно мала (3*10-31 г/см^), и звездам просто нечего нагревать; по этой же самой причине, кстати сказать, Вселенная прозрачна, и мы видим небесные светила. В то же время любая планета, будучи непрозрачной, аккумулирует часть энергии, излучаемой центральным светилом и нагревается, и тогда между нагретой планетой и холодным космосом возникает температурный градиент ТГ. Если планета обладает при этом достаточно подвижной газообразной и/или жидкой оболочкой (атмосферой и/или гидросферой), то ТГ с неизбежностью порождает в ней — просто за счет

1 ... 11 12 13 14 15 16 17 18 19 ... 188
Перейти на страницу:
Тут вы можете бесплатно читать книгу Интернет-журнал 'Домашняя лаборатория', 2007 №10 - Журнал «Домашняя лаборатория».
Комментарии