Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Ткань космоса. Пространство, время и текстура реальности - Брайан Грин

Ткань космоса. Пространство, время и текстура реальности - Брайан Грин

Читать онлайн Ткань космоса. Пространство, время и текстура реальности - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 148 149 150 151 152 153 154 155 156 ... 168
Перейти на страницу:

Это число — и аналогичное число, приведённое несколькими абзацами ниже при описании движения Чуви в направлении Земли, — было правильным на момент публикации книги. Но поскольку время здесь на Земле течёт, эти числа будут становиться несколько неточными.

61

Склонный к математике читатель должен заметить, что метафора сечения пространственно-временно́й буханки под разными углами представляет собой обычную концепцию пространственно-временных диаграмм, изучаемых в курсе специальной теории относительности. На пространственно-временных диаграммах всё трёхмерное пространство в данный момент времени с точки зрения наблюдателя, который считается стационарным, обозначается горизонтальной линией (или, на более продвинутых диаграммах, горизонтальной плоскостью), тогда как время обозначается вертикальной осью. (На нашем рисунке каждое сечение буханки — плоскость — представляет всё пространство в один момент времени, тогда как ось, идущая через середину буханки, от корки до корки, есть ось времени.) Пространственно-временная диаграмма обеспечивает наглядный способ представления точек, из которых составлен ваш слой настоящего и слой настоящего для Чуви.

Тонкие сплошные линии совпадают с временны́ми слоями (слоями настоящего) для наблюдателей, покоящихся по отношению к Земле (для простоты мы представляем, что Земля не вращается и не подвержена никаким ускорениям, поскольку это ненужное усложнение картины), а тонкие пунктирные линии совпадают с временны́ми слоями наблюдателей, двигающихся прочь от Земли, скажем, со скоростью 16,7 км/ч. Когда Чуви покоится относительно Земли, горизонтальные линии представляют его слои настоящего (и поскольку вы всё время покоитесь на Земле, эти тонкие сплошные линии всегда представляют ваши слои настоящего), а самая тёмная сплошная линия показывает слой настоящего, содержащий вас (левая тёмная точка) на Земле XXI в., и Чуви (правая тёмная точка), когда вы оба ещё сидите и читаете. Когда Чуви идёт в направлении от Земли, его слои настоящего представляются пунктирными линиями, а самая тёмная пунктирная линия представляет слой настоящего, содержащий самого Чуви (когда тот только что встал и отправился погулять). Заметим, что один из последующих пунктирных временны́х слоёв будет содержать гуляющего Чуви (если он всё ещё гуляет!) и вас в двадцать первом столетии, сидящего и читающего. Поэтому ваш единственный момент времени появится в двух списках настоящего у Чуви — в одном до того, как он отправился на прогулку, и в одном — после. Это демонстрирует ещё один способ, каким простое интуитивное представление о сейчас — при рассмотрении применительно к большим расстояниям — трансформируется специальной теорией относительности в концепцию с совершенно необычными свойствами. Далее, эти списки настоящего не имеют отношения к причинности: стандартная причинность (см. примечание {27}) остаётся полностью в силе. Список настоящего у Чуви резко изменяется (делает скачок) из-за того, что он сам перепрыгивает из одной системы отсчёта в другую. Но любой наблюдатель (используя любой хорошо определённый способ описания точек пространства-времени координатами) согласится с любым другим наблюдателем в отношении того, какие события на что могут влиять.

62

Albert Einstein and Michele Besso: Correspondence 1903–1955. P. Spezialy, ed. Paris: Hermann, 1972.

63

Данное обсуждение призвано придать качественный смысл тому, как переживания прямо сейчас вместе с памятью, которую вы имеете прямо сейчас, формируют основу ваших ощущений жизни, в которой вы имели эту память. Но если, например, ваш мозг и тело были каким-то образом приведены в точно то же состояние, в котором они находятся прямо сейчас, вы должны будете иметь то же самое ощущение прожитой жизни, которое подтверждает ваша память (предполагая, как я это делаю, что основа всех ощущений может быть найдена в физическом состоянии мозга и тела), даже если эти переживания никогда на самом деле не происходили, а были искусственно впечатаны в ваш мозг. Одно упрощение в обсуждении заключается в предположении, что мы можем чувствовать или переживать вещи, которые происходят в определённый момент времени, тогда как, на самом деле, требуется некоторое конечное время для обработки, для того чтобы мозг распознал и интерпретировал воздействие на входе. Хотя это и верно, но это не имеет особого значения для излагаемой мной точки зрения; это интересное, но совершенно не относящееся к делу усложнение, связанное с анализом представлений о времени в прямой связи с человеческими ощущениями. Как мы говорили раньше, различные жизненные примеры помогают делать наше обсуждение более обоснованным и интуитивно ясным, но это требует от нас отделять те аспекты обсуждения, которые более интересны с биологической точки зрения, в противоположность физической.

64

Вы можете поинтересоваться, как обсуждение в этой главе соотносится с нашим описанием в главе 3 объектов, «всегда двигающихся» через пространство-время со скоростью света. Для не склонного к математике читателя грубый ответ состоит в том, что история объекта представляется кривой в пространстве-времени — путём через блок пространства-времени, который высвечивает каждое место, которое занимал объект в момент, когда он там был (примерно так, как мы видим на рис. 5.1). Интуитивное обозначение «движения» через пространство-время тогда может быть выражено на языке «без течения», путём просто указания этого пути (в противоположность представлению, что путь проходится на ваших глазах). «Скорость», связанная с этим путём, тогда измеряется величиной, определяемой длиной этого пути (от одной выбранной точки до другой), делённой на промежуток времени, измеренный часами, переносимыми кем-то или чем-то между двумя выбранными точками пути. Ещё раз, это есть подход, который не содержит какого-либо течения времени: вы просто смотрите на то, что говорят интересующие вас часы в двух представляющих интерес точках. Оказывается, что скорость, найденная таким способом, для любого движения равна скорости света. Математически подготовленный читатель немедленно обнаружит причину этого. Метрика в пространстве-времени Минковского есть

(где dx2 есть евклидова длина ), тогда как время, измеряемое движущимся часами («собственное» время), даётся выражением dt2 = ds2/c2. Так что, очевидно, скорость движения через пространство-время, определяемая выражением ds/dt, равна c.

65

Carnap S. R. Autobiography, in The Philosophy of Rudolf Carnap. P. A. Schilpp, ed. Chicago: Library of Living Philosophers, 1963. P. 37.

66

Отметим, что асимметрия, о которой идёт речь (стрела времени), возникает из порядка, в котором события имеют место во времени. Вы могли бы также поинтересоваться асимметрией самого времени — например, как мы увидим в дальнейших главах, в соответствии с некоторыми космологическими теориями время могло иметь начало, но оно может не иметь конца. Это разные понятия асимметрии времени, но наше обсуждение здесь сосредоточено на первом. Но даже в этом случае до конца главы мы придём к заключению, что асимметрия вещей во времени имеет отношение к специальным условиям в ранней истории Вселенной, а потому связывает стрелу времени с космологией.

67

Для склонного к математике читателя позвольте мне отметить более точно, что означает симметрия по отношению к обращению времени, и указать на одно интригующее исключение, значение которого для обсуждаемых нами в этой главе проблем ещё предстоит полностью осознать. Простейшее определение симметрии по отношению к обращению времени состоит в утверждении, что набор законов физики симметричен по отношению к обращению времени. Если задано любое решение уравнений, скажем S(t), тогда S(−t) тоже будет решением этих уравнений. Например, в ньютоновской механике с силами, которые зависят от положений частиц, если x(t) = (x1(t), x2(t), ..., x3n(t)) есть положения n частиц в трёх пространственных измерениях, то из того, что x(t) является решением уравнений d2x(t)/dt2 = F(x(t)), следует, что x(−t) также является решением уравнений Ньютона d2x(−t)/dt2 = F(x(−t)) Отметим, что x(−t) представляет движение частиц, которые проходят через те же самые положения, что и в случае x(t), но в обратном порядке и с противоположными скоростями.

1 ... 148 149 150 151 152 153 154 155 156 ... 168
Перейти на страницу:
Тут вы можете бесплатно читать книгу Ткань космоса. Пространство, время и текстура реальности - Брайан Грин.
Комментарии