Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Как мы делаем это. Эволюция и будущее репродуктивного поведения человека - Роберт Мартин

Как мы делаем это. Эволюция и будущее репродуктивного поведения человека - Роберт Мартин

Читать онлайн Как мы делаем это. Эволюция и будущее репродуктивного поведения человека - Роберт Мартин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 88
Перейти на страницу:

Не только Кетле, Хантингтон и Каугилл, но и многие другие исследователи пытались связать сезонную динамику размножения человека с сезонными изменениями различных факторов среды. Одной из самых популярных была версия, объясняющая эту динамику перепадами температуры, принимая во внимание, как чувствительны яички к нагреванию. Однако в любом районе Земли сезонные изменения температуры остаются из года в год довольно постоянными, так что температурой окружающей среды нельзя объяснить отмечаемые исследователями перемены в сезонной динамике рождаемости. Еще одно похожее объяснение, которое тоже часто приводится, связывает рождаемость с уровнем осадков. Но существует и принципиально иная возможность. Не исключено, что сезонные ритмы размножения выработались в ходе эволюции как приспособление к среднегодовым изменениям условий окружающей среды. В этом случае наблюдаемая динамика может определяться внутренними факторами, а не непосредственным влиянием внешних условий. Как отмечал физиолог Ален Рейнберг, ритмическая активность – одно из фундаментальных свойств всех живых организмов, от одноклеточных до человека.

В свое время, когда исследования внутренних биологических часов еще только начинались, мне представилась уникальная возможность больше узнать об этом предмете. В середине 1960-х, когда я учился в аспирантуре и исследовал поведение тупай в институте Общества Макса Планка в поселке Зеевизен в Германии, неподалеку, в поселке Андекс, располагался другой институт того же общества, где проводились новаторские исследования внутренних часов, позволяющих животным следить за временем. Важнейшая разновидность таких часов, имеющаяся даже у одноклеточных, управляет динамикой активности и биологических процессов в ходе суточных циклов. Продолжительность так называемых циркадных (суточных) ритмов составляет около 24 часов. Этот внутренний механизм определяет временны́е рамки различных процессов приблизительно, а более точная настройка происходит под влиянием сигнальных факторов среды, в первую очередь наличия или отсутствия естественного освещения.

Научно-исследовательский институт в Андексе возглавлял врач и физиолог Юрген Ашофф, один из основателей науки о внутренних часах – хронобиологии. Под его руководством группа исследователей, в которую входил орнитолог Эберхард Гвиннер, для изучения механизмов суточных ритмов провела ряд экспериментов на млекопитающих и птицах. Одно из самых поразительных открытий, сделанных в ходе этих ранних исследований, состояло в том, что, если исключить сигнальные факторы среды, суточные ритмы животных сохраняются, но могут на несколько часов отклоняться в ту или иную сторону от стандартного 24-часового периода. Например, у животного может наблюдаться не зависящий от внешних факторов цикл, период которого составляет около 26 часов. Иными словами, для поддержания 24-часового ритма внутренним часам требуются сигналы извне. Работа этих часов немного напоминает работу не очень точных старинных часов с гирями, которые приходится каждое утро и каждый вечер подводить, чтобы они показывали правильное время. Любой, кому доводилось страдать от последствий дальних перелетов через несколько часовых поясов, в результате чего происходит резкий сдвиг такого важнейшего сигнального фактора, как естественное освещение, знает, как дорого нам приходится платить за вмешательство в работу своих внутренних часов.

В Андексе изучали не только животных, но и людей. Проведя ряд экспериментов на самом себе, Ашофф набрал добровольцев из числа студентов, согласившихся провести определенный срок (до четырех недель) в одиночестве в специальном подземном бункере, устроенном так, чтобы туда не проникали никакие сигналы извне. Перед началом эксперимента каждый испытуемый сдавал все свои часы, после чего получал возможность самостоятельно регулировать собственную активность, включая и выключая свет. Чтобы не получать никаких сигналов о времени от обслуживающего персонала, участники эксперимента сами готовили себе пищу. Кроме того, каждому из них выдавали на каждый день по одной бутылке особо крепкого пива «Андекс», сваренного в местном монастыре. Пока испытуемый находился в бункере, его внутренние часы шли независимо от внешних условий. Эксперименты позволили установить, что у человека, как и у животных, продолжительность цикла сна и бодрствования в условиях изоляции обычно отличается от стандартных 24 часов, иногда даже на несколько часов. Средняя продолжительность определяемых внутренними часами суточных циклов, наблюдавшихся у испытуемых в бункере Ашоффа, составляла около 25 часов.

Помимо внутренних часов, управляющих суточным циклом, у долгоживущих животных и растений имеются и другие внутренние часы, отвечающие за годичный цикл. Для исправной работы этих часов тоже необходимы внешние сигналы. Установлено, что во многих случаях ключевым сигналом для внутренних часов годичного цикла служат изменения продолжительности светового дня. Этот показатель, то есть продолжительность времени от рассвета до заката, меняется в течение года постоянным, предсказуемым образом и позволяет надежно определять текущую фазу каждого времени года. Но использование длины светового дня для подведения годичных биологических часов может быть сопряжено с одной трудностью: годичные изменения этого показателя зависят от географической широты. В высоких широтах диапазон таких изменений составляет несколько часов, в то время как в низких, ближе к экватору, изменения едва заметны. В Северном полушарии продолжительность светового дня достигает максимума в конце июня, а минимума – в конце декабря. Например, в Чикаго самый долгий световой день, день летнего солнцестояния, длится более 15 часов, а самый короткий – день зимнего солнцестояния – около 9 часов, так что диапазон годичных изменений составляет более 6 часов, в то время как на экваторе его продолжительность лишь несколько минут. В связи с этим в тропических широтах продолжительность светового дня намного сложнее использовать для регуляции фаз годичного цикла. Годичному циклу было посвящено меньше экспериментальных исследований, чем суточному (ведь исследования годичного цикла занимают годы, а не месяцы), результаты целого ряда экспериментов показали, что у животных в отсутствие такого сигнала извне, как естественная продолжительность светового дня, обычно наблюдается независимый от внешних условий цикл, определяемый внутренними часами и длящийся около года.

Среди млекопитающих очень широко распространено сезонное размножение – от круглогодичного с умеренным пиком в определенное время до ограниченного строго определенными периодом. У многих видов время спаривания, зачатия и рождения детенышей связано с годичным циклом изменений продолжительности светового дня. В таких случаях определенная фаза этого цикла вызывает развитие семенников у самцов и начало половой активности у самок. Особенно наглядно эта зависимость проявляется, разумеется, у тех видов, у которых период размножения строго ограничен. Среди приматов это особенно характерно для мадагаскарских видов лемуров. В нескольких случаях в лабораторных условиях были получены прямые доказательства влияния продолжительности светового дня на размножение. Это относится, в частности, к моим собственным исследованиям, которые я проводил в Университетском колледже Лондона, опираясь на данные о биологических часах, полученные в Андексе. В ходе этих исследований мне удавалось управлять временем размножения серых мышиных лемуров с помощью специальных световых часов, задававших изменения искусственного светового дня, похожие на естественные изменения светового дня на Мадагаскаре. Удлинение светового дня служит у мышиных лемуров сигналом к началу брачного периода, и я просто устанавливал световые часы так, чтобы лемуры начинали размножаться именно тогда, когда это было мне удобно для проведения наблюдений. Однажды мне даже удалось уменьшить интервал между двумя сезонами размножения, сократив длину годичного светового цикла до девяти месяцев.

Оказывается, чтобы узнать, определяется ли начало сезона размножения у того или иного вида млекопитающих продолжительностью светового дня, можно и не проводить многолетние эксперименты. Есть и более простой способ, связанный с закономерными следствиями вращения Земли вокруг своей наклонной оси одновременно с вращением вокруг Солнца. В Северном и Южном полушариях продолжительность светового дня меняется в течение года одинаково, но в противофазе, так что в Южном полушарии она достигает минимума в конце июня, а максимума – в конце декабря. В связи с этим, если перевезти млекопитающих, у которых размножение зависит от светового дня, из одного полушария в другое, их брачный период сдвигается на полгода. Ценные сведения о таких сдвигах можно извлечь из записей, которые ведут сотрудники зоопарков, регистрируя сроки размножения животных в неволе.

1 ... 12 13 14 15 16 17 18 19 20 ... 88
Перейти на страницу:
Тут вы можете бесплатно читать книгу Как мы делаем это. Эволюция и будущее репродуктивного поведения человека - Роберт Мартин.
Комментарии