Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

Читать онлайн Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 105
Перейти на страницу:

Теперь мы знаем, что Хаббл сильно ошибся в оценке расстояния от нас до галактик. Из-за этого он заключил, что Вселенная расширяется в 7 раз быстрее, чем на самом деле, и, следовательно, она в 7 раз моложе, чем в действительности. В 50-х годах, благодаря улучшенным измерениям, эта ошибка стала исправляться. Недовольные геологи получили подтверждение своей правоты и поостыли.

Второй «провал» теории Большого взрыва также исправили примерно в это время. Гамов провел новаторские исследования термоядерных реакций в звездах. Согласно этой работе, а также исследованиям других ученых, звезды производят почти только гелий – как сейчас Солнце. (Гамов надеялся, что первичный нуклеосинтез может объяснить, откуда взялись все остальные элементы.) Однако в 50-х годах физики-ядерщики открыли, как казалось, случайное совпадение между уровнями ядерной энергии гелия, бериллия, углерода и кислорода, благодаря которому усиливались термоядерные реакции. Фред Хойл первым понял, что это совпадение позволяет звездам на поздних стадиях жизни превращать гелий в углерод, кислород и большинство других элементов, из которых состоим мы. Более того, стало ясно, что звезды завершают жизнь, взрываясь и возвращая многие из порожденных атомов обратно в газовые облака, которые порождают новые звезды, планеты и, в конце концов, нас. Иными словами, мы связаны с небесами теснее, чем думали наши предки: мы созданы из звездной пыли. Мы живем во Вселенной, а Вселенная живет в нас. Эта догадка превратила гамовскую теорию первичного нуклеосинтеза из провала в потрясающий успех: в первые минуты Вселенная создала гелий с добавками дейтерия и лития, а звезды породили все остальные атомы[13]. Загадка происхождения атомов была разрешена. И тут – везет так везет, – едва отношение к теории горячей Вселенной наконец стало теплеть, как мир космологии взбудоражило подтверждение в 1964 году другого гамовского предсказания – послесвечения Большого взрыва в форме космического микроволнового излучения.

Что такое Большой взрыв?

Мы отодвинули границу наших знаний в прошлое почти на 14 млрд лет, к тому времени, когда вся Вселенная была раскаленным термоядерным реактором. Когда я говорю, что верю в гипотезу Большого взрыва, то имею в виду, что я убежден в истинности следующего утверждения, и не более того:

Все, что мы можем наблюдать сейчас, когда-то было горячее солнечного ядра и расширялось так быстро, что менее чем за секунду вдвое увеличивалось в размерах.

Этот взрыв, определенно, был достаточно большим, чтобы оправдать прописную букву в своем названии. Учтите, однако: мое определение, очень осторожное, ничего не говорит о том, что было до взрыва. Например, эта гипотеза не подразумевает, что возраст нашей Вселенной в тот момент составлял секунду, или что некогда она была бесконечно плотной, или она возникла из некоей сингулярности, в которой не действовала наша математика. На заданный в прошлой главе вопрос – есть ли у нас доказательство существования сингулярности в момент Большого взрыва? – имеется простой ответ: нет! Конечно, если мы экстраполируем уравнения Фридмана настолько далеко во времени, насколько они позволяют, они перестанут работать при бесконечно плотной сингулярности примерно за секунду до начала первичного нуклеосинтеза. Однако квантово-механическая теория (гл. 7) говорит, что эта экстраполяция перестает работать раньше, чем достигается сингулярность. Я думаю, очень важно различать то, чему есть надежные подтверждения, и то, что пока находится в области спекуляций. Хотя мы располагаем некоторыми интересными теориями (гл. 5), следует прямо заявить, что мы ничего не знаем наверняка. Вот нынешний рубеж наших знаний. Вообще-то мы даже не уверены, что наша Вселенная действительно имела начало, а не занималась непонятно чем вечность до первичного нуклеосинтеза.

Короче говоря, мы отодвинули границу знания на удивление далеко во времени, уяснив ход космической истории (рис. 3.7). Через 1 млн лет после Большого взрыва пространство было заполнено почти однородным прозрачным газом. Если рассматривать космическую драму в обратном порядке, мы увидим, как газ становится все горячее, его атомы сталкиваются друг с другом все активнее, пока они не распадаются на ядра и свободные электроны и не образуют плазму. Затем мы увидим, как атомы гелия, сталкиваясь, разбиваются на протоны и нейтроны. А те разбиваются на кварки. Тут мы пересекаем границу знания и входим в сферу научных спекуляций: в гл. 5 мы исследуем то, что на рис. 3.7 названо «инфляцией» и «квантовой пеной». Если мы вернемся к миллиону лет после Большого взрыва и запустим время вперед, то увидим, как гравитация увеличивает небольшие сгущения газа, превращая их в галактики, звезды и все разнообразные космические структуры, которые мы наблюдаем сегодня.

Рис. 3.7. Хотя мы мало что знаем о рождении Вселенной, мы хорошо представляем себе, что случилось в следующие 14 млрд лет. По мере того, как Вселенная расширялась и охлаждалась, кварки объединялись в протоны (ядра водорода) и нейтроны, которые, в свою очередь, сливались в ядра гелия. Затем ядра, захватывая электроны, образовывали атомы, а гравитация сложила из атомов галактики, звезды и планеты.

Но гравитация может лишь усиливать малые флуктуации, превращая их в крупные, и не способна порождать флуктуации из ничего. Идеально гладкую и однородную среду гравитация сохранит таковой навсегда. Она не в силах образовать никаких уплотнений, не говоря уже о галактиках. Это означает, что в ранней Вселенной должны были существовать небольшие зародышевые флуктуации, которые гравитация могла усиливать и которые послужили своего рода космическими чертежами, определяющими, где будут формироваться галактики. Откуда могли появиться эти флуктуации? Мы увидели, откуда во Вселенной атомы, но что можно сказать о происхождении величественного паттерна, в который выстроились галактики? Откуда взялась крупномасштабная структура Вселенной? Из множества космологических вопросов, которыми задавались люди, этот кажется мне самым важным. В следующих двух главах я поясню, почему я так считаю.

Резюме

• Свету из далеких источников требуется время, чтобы достичь Земли, поэтому телескопы позволяют нам увидеть ход истории космоса.

• Около 14 млрд лет назад наша Вселенная была горячее, чем нынешнее ядро Солнца, и расширялась настолько быстро, что меньше чем за секунду удваивалась в размерах. Я называю это «Большим взрывом».

• Хотя нам неизвестно, что происходило до Большого взрыва, мы уже многое знаем о произошедшем с тех пор – о расширении пространства и кластеризации вещества.

• В течение нескольких минут Вселенная была гигантским термоядерным реактором и, подобно солнечному ядру, превращала водород в гелий и другие элементы, пока космологическое расширение не сделало ее разреженной и холодной в достаточной мере, чтобы термоядерные реакции остановились.

• Расчеты показывают, что около 25 % водорода превратилось в гелий. Измерения прекрасно согласуются с этим предсказанием и данными о других легких элементах.

• Еще через 400 тыс. лет расширения и разрежения водородно-гелиевая плазма охладилась настолько, что стала прозрачным газом. Мы видим этот переход как далекую плазменную стену, слабое свечение которой известно как космический микроволновый фон (за его изучение присудили две Нобелевских премии).

• За миллиарды лет гравитация превратила нашу Вселенную из однородной и скучной в комковатую и интересную. Гравитация усилила незначительные флуктуации, которые мы наблюдаем на космическом микроволновом фоне, и сформировала из них планеты, звезды, галактики и наблюдаемую сейчас крупномасштабную структуру Вселенной.

• Теория космологического расширения предсказывает, что галактики должны удаляться от нас в соответствии с определенной формулой, которая согласуется с тем, что мы действительно наблюдаем.

• Вся история Вселенной с высокой точностью описывается простыми физическими законами, которые позволяют определять будущее на основании прошлого, и наоборот.

• Физические законы, управляющие историей нашей Вселенной, описываются с помощью математических уравнений. Поэтому самое точное описание нашей космической истории – математическое.

Глава 4. Вселенная в числах

Космологи часто ошибаются, но никогда не сомневаются.

Лев Ландау

Теоретически теория и практика – одно и то же, но на практике – совсем разные вещи.

Альберт Эйнштейн

Уменя буквально челюсть отвисла. Я стоял на обочине, лишившись дара речи. Я ежедневно смотрел на небо, всю свою жизнь, но никогда прежде по-настоящему его не видел. Было около пяти утра. Я остановился на обочине шоссе через Аризонскую пустыню, чтобы свериться с картой. И оказался пригвожден к месту: то, что я увидел над головой, ничуть не походило на мутное стокгольмское небо с редкими проблесками тусклых звезд, под которым я вырос. Из тысяч сверкающих точек складывались прекрасные узоры, а поперек небосвода, как величественное галактическое шоссе, тянулся Млечный Путь.

1 ... 12 13 14 15 16 17 18 19 20 ... 105
Перейти на страницу:
Тут вы можете бесплатно читать книгу Наша математическая вселенная. В поисках фундаментальной природы реальности - Макс Тегмарк.
Комментарии