UNIX: разработка сетевых приложений - Уильям Стивенс
Шрифт:
Интервал:
Закладка:
■ Медленный старт и предотвращение перегрузки. Это форма управления потоком, осуществляемого отправителем, служащая для определения текущей пропускной способности сети и позволяющая контролировать ситуацию во время переполнения сети. Все современные TCP-приложения должны поддерживать эти два свойства, и опыт (накопленный еще до того, как эти алгоритмы были реализованы в конце 80-х) показывает, что протоколы, не снижающие скорость передачи при перегрузке сети, лишь усугубляют эту перегрузку (см., например, [52]).
Суммируя вышесказанное, мы можем сформулировать следующие рекомендации:
■ UDP должен использоваться для приложений широковещательной и многоадресной передачи. Если требуется какая-либо форма защиты от ошибок, то соответствующая функциональность должна быть добавлена клиентам и серверам. Однако приложения часто используют широковещательную и многоадресную передачу, когда некоторое (предположительно небольшое) количество ошибок вполне допустимо (например, потеря аудио- или видеопакетов). Имеются приложения многоадресной передачи, требующие надежной доставки (например, пересылка файлов при помощи многоадресной передачи), но в каждом конкретном случае мы должны решить, компенсируется ли выигрышем в производительности, получаемым за счет использования многоадресной передачи (отправка одного пакета N получателям вместо отправки N копий пакета через N соединений TCP), дополнительное усложнение приложения для обеспечения надежности соединений.
■ UDP может использоваться для простых приложений «запрос-ответ», но тогда обнаружение ошибок должно быть встроено в приложение. Минимально это означает включение подтверждений, тайм-аутов и повторных передач. Управление потоком часто не является существенным для обеспечения надежности, если запросы и ответы имеют достаточно разумный размер. Мы приводим пример реализации этой функциональности в приложении UDP, представленном в разделе 22.5. Факторы, которые нужно учитывать, — это частота соединения клиента и сервера (нужно решить, можно ли не разрывать установленное соединение TCP между транзакциями) и количество данных, которыми обмениваются клиент и сервер (если в большинстве случаев при работе данного приложения требуется много пакетов, стоимость установления и разрыва соединения TCP становится менее значимым фактором).
■ UDP не следует использовать для передачи большого количества данных (например, при передаче файлов). Причина в том, что оконное управление потоком, предотвращение переполнения и медленный старт должны быть встроены в приложение вместе с функциями, перечисленными в предыдущем пункте. Это означает, что мы фактически заново изобретаем TCP для одного конкретного приложения. Нам следует оставить производителям заботу об улучшении производительности TCP и сконцентрировать свои усилия на самом приложении.
Из этих правил есть исключения, в особенности для существующих приложений. Например, TFTP использует UDP для передачи большого количества данных. Для TFTP был выбран UDP, поскольку, во-первых, его реализация проще в отношении кода начальной загрузки (800 строк кода С для UDP в сравнении с 4500 строками для TCP, например в [128]), а во-вторых, TFTP используется только для начальной загрузки систем в локальной сети, а не для передачи большого количества данных через глобальные сети. Однако при этом требуется, чтобы в TFTP были предусмотрены такие свойства, как собственное поле порядкового номера (для подтверждений), тайм-аут и возможность повторной передачи.
NFS (Network File System — сетевая файловая система) является другим исключением из правила: она также использует UDP для передачи большого количества данных (хотя некоторые могут возразить, что в действительности это приложение типа «запрос-ответ», использующее запросы и ответы больших размеров). Отчасти это можно объяснить исторически сложившимися обстоятельствами: в середине 80-х, когда была разработана эта система, реализации UDP были быстрее, чем TCP, и система NFS использовалась только в локальных сетях, где потеря пакетов, как правило, происходит на несколько порядков реже, чем в глобальных сетях. Но как только в начале 90-х NFS начала использоваться в глобальных сетях, а реализации TCP стали обгонять UDP в отношении производительности при передаче большого количества данных, была разработана версия 3 системы NFS для поддержки TCP. Теперь большинство производителей предоставляют NFS как для и TCP, так и для UDP. Аналогичные причины (большая скорость по сравнению с TCP в начале 80-х плюс преобладание локальных сетей над глобальными) привели к тому, что в Apollo NCS (предшественник DCE RPC) сначала использовали UDP, а не TCP, хотя современные реализации поддерживают и UDP, и TCP.
Мы могли бы сказать, что применение UDP сокращается, поскольку сегодня хорошие реализации TCP не уступают в скорости сетям и все меньше разработчиков готовы встраивать в приложения UDP функциональность, свойственную TCP. Но предсказываемое увеличение количества мультимедиа-приложений в будущем десятилетии должно привести к возрастанию популярности UDP, поскольку их работа обычно подразумевает использование многоадресной передачи, требующей наличия UDP.
22.5. Добавление надежности приложению UDP
Если мы хотим использовать UDP для приложения типа «запрос-ответ», как было отмечено в предыдущем разделе, мы должны добавить нашему клиенту две функции:
■ тайм-аут и повторную передачу, которые позволяют решать проблемы, возникающие в случае потери дейтаграмм;
■ порядковые номера, позволяющие клиенту проверить, что ответ приходит на определенный запрос.
Эти два свойства предусмотрены в большинстве существующих приложений UDP, использующих простую модель «запрос-ответ»: например, распознаватели DNS, агенты SNMP, TFTP и RPC. Мы не пытаемся использовать UDP для передачи большого количества данных: наша цель — приложение, посылающее запрос и ожидающее ответа на этот запрос.
ПРИМЕЧАНИЕИспользование дейтаграмм по определению не может быть надежным, следовательно, мы специально не называем данный сервис «надежным сервисом дейтаграмм». Действительно, термин «надежная дейтаграмма» — это оксюморон. Речь идет лишь о том, что приложение до некоторой степени обеспечивает надежность, добавляя соответствующие функциональные возможности «поверх» ненадежного сервиса дейтаграмм (UDP).
Добавление порядковых номеров осуществляется легко. Клиент подготавливает порядковый номер для каждого запроса, а сервер должен отразить этот номер обратно в своем ответе клиенту. Это позволяет клиенту проверить, что данный ответ пришел на соответствующий запрос.
Более старый метод реализации тайм-аутов и повторной передачи заключался в отправке запроса и ожидании в течение N секунд. Если ответ не приходил, осуществлялась повторная передача и снова на ожидание ответа отводилось N секунд. Если это повторялось несколько раз, отправка запроса прекращалась. Это так называемый линейный таймер повторной передачи (на рис. 6.8 [111] показан пример клиента TFTP, использующего эту технологию. Многие клиенты TFTP до сих пор пользуются этим методом).
Проблема при использовании этой технологии состоит в том, что количество времени, в течение которого дейтаграмма совершает цикл в объединенной сети, может варьироваться от долей секунд в локальной сети до нескольких секунд в глобальной. Факторами, влияющими на время обращения (RTT), являются расстояние, скорость сети и переполнение. Кроме того, RTT между клиентом и сервером может быстро меняться со временем при изменении условий в сети. Нам придется использовать тайм-ауты и алгоритм повторной передачи, который учитывает действительное (измеряемое) значение периода RTT и изменения RTT с течением времени. В этой области ведется большая исследовательская работа, в основном направленная на TCP, но некоторые идеи применимы к любым сетевым приложениям.
Мы хотим вычислить тайм-аут повторной передачи (RTO), чтобы использовать его при отправке каждого пакета. Для того чтобы выполнить это вычисление, мы измеряем RTT — действительное время обращения для пакета. Каждый раз, измеряя RTT, мы обновляем два статистических показателя: srtt — сглаженную оценку RTT, и rttvar — сглаженную оценку среднего отклонения. Последняя является хорошей приближенной оценкой стандартного отклонения, но ее легче вычислять, поскольку для этого не требуется извлечения квадратного корня. Имея эти два показателя, мы вычисляем RTO как сумму srtt и rttvar, умноженного на четыре. В [52] даются все необходимые подробности этих вычислений, которые мы можем свести к четырем следующим уравнениям: