Большая Советская Энциклопедия (ТЕ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Применительно к дисперсионно-твердеющим сплавам ТМО в промышленности осуществляют по следующим технологическим схемам: а) нагрев до температуры закалки, деформация, немедленная закалка, старение (ВТМО); б) закалка, деформация, старение (НТМО). Первая схема сравнительно легко осуществима, но имеет недостаток — опасность сильного развития рекристаллизации в связи с высокой температурой деформации, проводимой при температуре закалки. Она широко используется в производстве прессованных изделий из многих алюминиевых сплавов, в которых небольшие добавки Mn, Сr и др. затрудняют рекристаллизацию. При осуществлении второй схемы могут возникать трудности, связанные с высоким сопротивлением деформации твёрдого раствора при комнатной температуре. Эта схема имеет ряд преимуществ: происходит старение с образованием весьма дисперсных фаз уже при холодной (или тёплой) деформации, создаётся более равномерное распределение выделений упрочняющих фаз, образующихся на дислокациях по всему объёму зёрен. Вторая схема ТМО успешно используется для повышения прочности стареющих медных и алюминиевых сплавов.
Лит.: Бернштейн М. Л., Термомеханическая обработка металлов и сплавов, т. 1—2, М., 1968.
М. Л. Бернштейн.
Классификация видов термомеханической обработки: ПТМО — предварительная термомеханическая обработка; ВТМО — высокотемпературная термомеханическая обработка; ВТМПО — высокотемпературная термомеханическая поверхностная обработка; ВТМизО — высокотемпературная термомеханическая изотермическая обработка; НТМО — низкотемпературная термомеханическая обработка; НТМизО — низкотемпературная термомеханическая изотермическая обработка; ВНТМО — высоко-низкотемпературная термомеханическая обработка; НВТМО — низко-высокотемпературная термомеханическая обработка; ДМО-1 — деформация мартенсита с последующим отпуском; ДМО-2 — деформация мартенсита после ВТМО с последующим отпуском; МТО — деформация немартенситных структур на площадке текучести, в том числе многократная ММТО; МТО-1 — механико-термическая обработка деформацией при комнатной температуре со старением; МТО-2 — механико-термическая обработка деформацией при повышенных температурах со старением; НВТМУ — наследственное высокотемпературное термомеханическое упрочнение; A1 и А3 — нижняя и верхняя критические точки; Мн — температура начала мартенситного превращения. Термомеханическая обработка I и IV классов основана на явлении наследования упрочнения, сохраняющегося после соответствующей термической обработки.
Термомеханический эффект
Термомехани'ческий эффе'кт, эффект фонтанирования, появление в сверхтекучей жидкости разности давлений Dр , обусловленной разностью температур DТ (см. Сверхтекучесть ). Т. э. проявляется в жидком сверхтекучем гелии в различии уровней жидкости в двух сосудах, сообщающихся через узкую щель или капилляр и находящихся при разных температурах (рис. , а). Другой наглядный способ демонстрации Т. э. заключается в нагреве излучением трубки, плотно набитой мелким чёрным порошком и опущенной одним концом в сверхтекучий гелий. При освещении порошок быстро нагревается, и в силу термомеханической разности давлений жидкий гелий фонтаном выбрасывается из верхнего конца капилляра (рис. , б). Обратный эффект — охлаждение сверхтекучего гелия при продавливании через узкие щели или капилляры — называется механокалорическим эффектом . В рамках двухкомпонентной модели сверхтекучего гелия Т. э. можно объяснить как выравнивание концентрации сверхтекучей компоненты, свободно протекающей через щель в направлении нагретой части жидкости. В то же время поток нормальной компоненты в обратном направлении невозможен из-за проявления сил вязкости в узкой щели (см. Гелий ). Термодинамика даёт для разности давлений в Т. э. соотношение Dр /DТ = pS, где р — плотность, S — энтропия жидкого гелия.
Лит.: Кеезом В., Гелий, пер. с англ., М., 1949; Мендельсон К., Физика низких температур, пер. с англ., М., 1963.
И. П. Крылов.
Термомеханический эффект: а — уровень жидкости в сосуде с нагревателем Н выше, чем в сообщающемся с ним сосуде; б — фонтанирование гелия при освещении и нагреве порошка П, находящегося в сосуде со сверхтекучим гелием (В — гигроскопическая вата).
Термонастия
Термона'стия, движение органов растений, обусловленное изменением температуры в окружающей среде; см. Настии .
Термопара
Термопа'ра, датчик температуры, состоящий из двух соединённых между собой разнородных электропроводящих элементов (обычно металлических проводников, реже полупроводников). Действие Т. основано на эффекте Зеебека (см. Термоэлектрические явления ). Если контакты (обычно — спаи) проводящих элементов, образующих Т. (их часто называют термоэлектродами), находятся при разных температурах, то в цепи Т. возникает эдс (термоэдс), величина которой однозначно определяется температурой «горячего» и «холодного» контактов и природой материалов, примененных в качестве термоэлектродов.
Т. используются в самых различных диапазонах температур. Так, Т. из золота, легированного железом (2-й термоэлектрод — медь или хромель), перекрывает диапазон 4—270 К, медь — константан 70—800 К, хромель — копель 220—900 К, хромель — алюмель 220—1400 К, платинородий — платина 250—1900 К, вольфрам — рений 300—2800 К. Эдс Т. из металлических проводников обычно лежит в пределах 5—60 мв. Точность определения температуры с их помощью составляет, как правило, несколько К, а у некоторых Т. достигает ~0,01 К. Эдс Т. из полупроводников может быть на порядок выше, но такие Т. отличаются существенной нестабильностью.
Т. применяют в устройствах для измерения температуры (см. Термометрия ) и в различных автоматизированных системах управления и контроля. В сочетании с электроизмерительным прибором (милливольтметром, потенциометром и т. п.) Т. образует термоэлектрический термометр. Измерительный прибор подключают либо к концам термоэлектродов (рис. , а), либо в разрыв одного из них (рис. , б). При измерении температуры один из спаев осязательно термостатируется (обычно при 273 К). В зависимости от конструкции и назначения различают Т.: погруженные и поверхностные; с обыкновенной, взрывобезопасной, влагонепроницаемой или иной оболочкой (герметичной или негерметичной), а также без оболочки; обыкновенные, вибротряскоустойчивые и ударопрочные; стационарные и переносные и т. д. См. также Термоэлемент .
Лит.: Сосновский А. Г., Столярова Н. И., Измерение температур, М., 1970.
Д. Н. Астров.
Схемы включения термопары в измерительную цепь: а — измерительный прибор 1 подключен соединительными проводами 2 к концам термоэлектродов 3 и 4; б — в разрыв термоэлектрода 4; T1 , Т2 — температура «горячего» и «холодного» контактов (спаев) термопары.
Термопластическая запись
Термопласти'ческая за'пись, запись оптического изображения или электрических сигналов, несущих информацию об изображении, на прозрачной или отражающей плёнке из термопласта , причём на поверхности плёнки образуется микрорельеф со структурой, соответствующей записываемому изображению (сигналу). Эта система записи и воспроизведения информации разработана в конце 50-х гг. 20 в. У. Э. Гленном (США) как один из способов консервации телевизионных программ.
В процессе записи термопластическую (ТП) плёнку сначала электрически заряжают так, чтобы в каждой её точке поверхностная плотность зарядов соответствовала яркости записываемого изображения (рис. 1 , а). Затем ТП слой расплавляют (например, воздействуя на него инфракрасным излучением). Под действием электростатических сил между поверхностными зарядами и зарядами, возникающими (вследствие электростатической индукции) в электропроводящем слое плёнки, на ТП слое образуется рельеф (рис. 1 , б), глубина которого в каждой точке определяется плотностью зарядов и, следовательно, яркостью изображения. После этого ТП слою дают застыть. Обычно глубина рельефа не превышает 1 мкм.
В зависимости от способа нанесения зарядов различают Т. з. обычную и фототермопластическую (ФТП). При обычной Т. з. рабочее распределение зарядов создают в вакуумной камере сфокусированным на плёнку сканирующим электронным лучом, развёртывающим изображение (см. Развёртка ). ФТП запись производят в воздушной атмосфере с применением ФТП плёнок, у которых либо сам ТП слой обладает свойством фотопроводимости , либо между ТП и проводящим слоями расположен слой фоточувствительного полупроводника . Предварительно поверхность ФТП плёнки равномерно заряжают (используя коронный разряд ), подобно тому, как это делается в электрофотографии . Затем на неё фокусируют записываемое изображение. Благодаря фотопроводимости плёнки на ТП слое происходит перераспределение зарядов в соответствии с изображением.