ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.
Шрифт:
Интервал:
Закладка:
Реальный мир так сложен, что трудно вообразить себе маленький карманный калькулятор, который мог бы ответить на ваши вопросы путем нажатия кнопок с надписями «собака», «помойное ведро», «лампочка» и так далее. На самом деле, до сих пор очень трудно заставить даже большой и быстрый компьютер отвечать на вопросы о ситуациях, которые кажутся нам весьма простыми. Кажемся, что для того, чтобы компьютер «понял» задачу, необходимы много знаний и умение соотносить их друг с другом должным образом. Процессы мышления можно сравнить с деревом, чья видимая часть твердо стоит на земле, но, при этом зависит от невидимых корней, протягивающихся далеко под землей, поддерживающих и питающих дерево. В данном случае под корнями понимаются сложные процессы, происходящие на подсознательных уровнях — процессы, результаты которых управляют нашим мышлением, но о которых мы сами не подозреваем. Они работают как «пусковые механизмы символов», которые мы обсуждали в главах XI и XII.
Размышления о реальном мире очень отличаются от того, что происходит, когда мы перемножаем два числа — в последнем случае все находится, так сказать, над землей, открытое для обозрения. В арифметике высший уровень может быть выделен и промоделирован на аппаратуре различных типов: механические складывающие аппараты, карманные калькуляторы, компьютеры, человеческие мозги и так далее. Именно это и утверждает Тезис Чёрча-Тюринга. Но когда дело касается понимания реального мира, то трудно представить себе, что высший уровень возможно выделить и запрограммировать отдельно. Пусковые механизмы символов слишком сложны. Мысль должна «просочиться», профильтроваться сквозь многие уровни. В частности — и это возвращает нас к основным темам глав XI и XII — представление в мозгу реального мира, хотя и основанное до некоторой степени на изоморфизме, включает некоторые элементы, не имеющие никакого соответствия в окружающей нас действительности. Оно гораздо сложнее элементарных мысленных образов «собаки», «щетки» и так далее. Конечно, все эти символы существуют, но их внутренняя структура необыкновенно сложна и почти недоступна сознательному исследованию. Более того, стараться найти соответствие внутренней структуре какого бы то ни было символа в реальном мире было бы напрасным трудом.
Процессы, которые не так легко выделитьМозг является весьма необычной формальной системой, поскольку на низшем, нейронном уровне там где действуют «правила», меняющие состояние системы, может не существовать интерпретации примитивных элементов (таких как возбуждение отдельных нейронов или, может быть, даже события еще более низкого уровня). Однако, на высшем уровне возникает осмысленная интерпретация — соответствие между крупными «облаками» нейронной активности, которые мы назвали «символами» и событиями реального мира. Это напоминает Геделево построение тем, что в обоих случаях изоморфизм высшего уровня позволяет наделять строчки смыслом более высокого уровня, однако в Геделевом построении значение высшего уровня опирается на значение низших уровней — то есть оно выводится из значения низших уровней при помощи Геделевой нумерации. С другой стороны, события, происходящие в мозгу на нейронном уровне не имеют соответствующей интерпретации в реальном мире — они совершенно ничего не имитируют Они являются всего лишь субстратом, поддерживающим высший уровень, подобно тому, как транзисторы в карманном калькуляторе поддерживают его числовую деятельность Из этого следует что невозможно выделив высший уровень в чистом виде, создать изоморфную копию программы если мы хотим отобразить мозговые процессы, участвующие в понимании реального мира, нам придется отобразить также и некоторые процессы происходящие на низшем уровне, — так сказать, «языки мозга». Может оказаться, что при этом нам придется спуститься до уровня самой «аппаратуры».
В процессе создания программы с целью добиться «разумного» (то есть человекоподобного) внутреннего представления об окружающей действительности в какой-то момент приходится использовать структуры и процессы, не допускающие прямолинейной интерпретации — иными словами, не имеющие прямого соответствия в реальном мире. Эти низшие уровни программы могут быть поняты не благодаря их прямой связи со внешним миром а благодаря их каталитическому воздействию на лежащие над ними уровни. (Конкретное воплощение этой идеи было предложено Муравьедом в «Муравьиной фуге»: неописуемо скучный кошмар прочтения книги на низшем уровне.)
Лично мне кажется, что такая многоуровневая структура концептуальных систем становится необходимой в тот момент, когда процессы, включающие образы и аналогии становятся значимыми элементами программы — в отличие от процессов которые управляют дедуктивными рассуждениями. Процессы, управляющие дедуктивными рассуждениями могут быть запрограммированы на практически единственном уровне и таким образом являются выделимыми по определению. Согласно моей гипотезе, мыслительные процессы, использующие воображение и аналогию изначально требуют нескольких уровней субстрата и следовательно являются невыделимыми. Кроме того, я считаю что именно в этот момент начинают возникать способности к творчеству — из чего вытекает что эти способности изначально зависят от неких «неинтерпретируемых» процессов низшего уровня. Разумеется, весьма интересно выяснить, на что опирается творческое мышление; в следующих двух главах мы обсудим некоторые существующие на этот счет гипотезы.
Символы редукционистской верыОдним из способов представлять отношения между высшими и низшими уровнями мозга является следующий. Возможно построить такую нейронную сеть, которая на местном уровне (то есть на уровне отдельных нейронов) работала бы точно так же, как нейронная сеть мозга, но в которой не возникало бы никакого значения на высшем уровне. То, что низший уровень состоит из взаимодействующих нейронов, еще не гарантирует появления значения на высшем уровне, подобно тому, как наличие макаронных буковок в алфавитном супе не гарантирует того, что в тарелке будут плавать слова и предложения. Значение высшего уровня — это факультативная черта нейронных сетей, которая может возникнуть в процессе эволюции, как результат воздействия окружающей среды.
Диаграмма на рис. 107 иллюстрирует тот факт, что рождение значения на высшем уровне необязательно. Стрелка, указывающая наверх, означает, что может существовать субстрат, не имеющий высшего значения, — но не наоборот: высшие уровни должны опираться на низшие уровни.
Эта диаграмма подразумевает возможность компьютерной симуляции нейронных сетей. В принципе такое возможно, как бы сложны ни были эти сети, если возможно описать поведение отдельных нейронов в терминах операций, выполнимых на компьютере. Это важное утверждение, которое почти никем не ставится под сомнение. Тем не менее, это является одним из символов «редукционистской веры», нечто вроде «микроскопической версии» тезиса Чёрча-Тюринга. Ниже эта версия сформулирована целиком:
ТЕЗИС ЧЁРЧА-ТЮРИНГА, МИКРОСКОПИЧЕСКАЯ ВЕРСИЯ: Поведение отдельных компонентов человеческого существа может быть симулировано на компьютере. Следовательно, поведение отдельных компонентов (обычно ими считаются клетки) может быть вычислено на Флупе (общерекурсивная функция) с любой степенью аккуратности, если дано достаточно точное описание как внутреннего состояния данного компонента, так и его окружения.
Рис. 107. Нейронная и символическая деятельность мозга.
Эта версия Тезиса утверждает, что процесс мышления, хотя он и имеет больше уровней организации, не более загадочен, чем, скажем, процесс пищеварения. В наше время никто не осмелился бы выдвинуть предположение, что люди переваривают пищу не благодаря обыкновенным химическим процессам, а благодаря некой магической и мистической «ассимиляции». Эта версия Тезиса Ч-Т просто применяет те же рассуждения к мышлению. Короче, в ней высказывается предположение, что мозговые процессы, в принципе, возможно понять. Поэтому я и назвал это мнение символом редукционистской веры.