Большая Советская Энциклопедия (МО) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
М., применяемые в современных научных исследованиях, впервые были в явном виде использованы в математике для доказательства непротиворечивости геометрии Лобачевского относительно геометрии Евклида (см. Неевклидовы геометрии , Аксиоматический метод ). Развитый в этих доказательствах т. н. метод интерпретации получил затем особенно широкое применение в аксиоматической теории множеств. На стыке алгебры и математической логики сформировалась специальная дисциплина — моделей теория , в рамках которой под М. (или «алгебраической системой») понимается произвольное множество с заданными на нём наборами предикатов и (или) операций — независимо от того, удаётся ли такую М. описать аксиоматическими средствами (нахождение таких описаний и является одной из основных задач теории М.). Дальнейшую детализацию такое понятие М. получило в рамках логической семантики . В результате логико-алгебраического и семантического уточнений понятия «М.» выяснилось также, что его целесообразно вводить независимо от понятия изоморфизма (поскольку аксиоматические теории допускают, вообще говоря, и не изоморфные между собой М.).
В соответствии с различными назначениями методов моделирования понятие «М.» используется не только и не столько с целью получения объяснений различных явлений, сколько для предсказания интересующих исследователя явлений. Оба эти аспекта использования М. оказываются особенно плодотворными при отказе от полной формализации этого понятия. «Объяснительная» функция М. проявляется при использовании их в педагогических целях, «предсказательная» — в эвристических (при «нащупывании» новых идей, получении «выводов по аналогии» и т. п.). При всём разнообразии этих аспектов их объединяет представление о М. прежде всего как орудии познания, т. е. как об одной из важнейших философских категорий. Для использования этого понятия во всех разнообразных аспектах на современном этапе развития науки характерно значительное расширение арсенала применяемых М. Введение в число параметров, описывающих изменяющиеся (развивающиеся) системы временных характеристик (или использование функций в математическом смысле этого слова в качестве первичных элементов М.), позволяет расширить понятие изоморфизма до т. н. изофункционализма и с его помощью отображать (моделировать) не только «жестко заданные», неизменные системы, но и различные процессы (физические, химические, производственные, экономические, социальные, биологические и др.). Это открывает широкие возможности использования в качестве М. программ для цифровых ЭВМ, «языки» которых можно рассматривать как «универсальные моделирующие системы». То же, конечно, относится и к обычным (естественным) языкам, причём и по отношению к языковым М. претензии на их непременный изоморфизм описываемым ситуациям оказываются несостоятельными и ненужными. К тому же предварительный учёт всех подлежащих «моделированию» параметров, нужный для буквального понимания термина «М.» введённого каким-либо точным определением, часто невозможен (что и обусловливает, кстати, потребность в моделировании), в силу чего особенно плодотворным опять-таки оказывается расширительное понимание термина «М.», основывающееся на интуитивных представлениях о «моделировании». Это относится ко всякого рода «вероятностным» М. обучения (см. также Программированное обучение ), «М. поведения» в психологии, к типичным для кибернетики М. самоорганизующихся (самонастраивающихся) систем. Требование непременной формализации как предпосылки построения М. лишь сковывало бы возможности научных исследований. Весьма перспективным путём преодоления возникающих здесь трудностей представляется также введение различных ослаблений в формальные определения понятия «М.», в результате чего возникают «приближённые», «размытые» понятия «квазимодели», «почти М.» и т. п. При этом для всех модификаций понятия «М.» на всех уровнях его абстракции оно используется в обоих упомянутых выше смыслах, причём зачастую одновременно. Например, «запись» генетической информации в хромосомах моделирует родительские организмы и в то же время моделируется в организме потомка.
Лит.: Клини С. К., Введение в метаматематику, пер. с англ., М., 1957, § 15; Эшби У. Р., Введение в кибернетику, пер. с англ., М., 1959, гл. 6; Лахути Д. Г., Ревзин И. И., Финн В. К., Об одном подходе к семантике, «Философские науки», 1959, № 1; Моделирование в биологии. [Сб. ст.], пер. с англ., М., 1963; Бир С., Кибернетика и управление производством, пер. с англ., М., 1963; Чжао Юань-жень, Модели в лингвистике и модели вообще, в сборнике: Математическая логика и её применения, пер. с англ., М., 1965, с. 281—92; Миллер Дж., Галантер Ю., Прибрам К., Планы и структура поведения, пер. с англ., М., 1965; Гастев Ю. А., О гносеологических аспектах моделирования, в сборнике: Логика и методология науки, М., 1967, с. 211—18; Карри Х. Б., Основания математической логики, пер. с англ., М., 1969, гл. 2 и 7; Хомский Н., Язык и мышление, пер. с англ., М., 1972; Carnap R., The logical syntax of language, L., 1937; Кemeny J. G., A new approach to semantics, «Journal of Symbolic Logic», 1956, v. 21, № 1—2; Gastev Yu. A., The role of the isomorphism and homomorphism conceptions in methodology of deductive and empirical sciences, в сборнике: Abstracts. IV International congress for logic, methodology and philosophy of science, Buc., [1971], p. 137—38.
Ю. А. Гастев.
Модель Вальтер
Мо'дель (Model) Вальтер (24.1.1891, Гентин, Восточная Пруссия, — 21.4.1945, близ Дуйсбурга), немецко-фашистский генерал-фельдмаршал (1944). В армии с 1909, участвовал в 1-й мировой войне 1914—18. С ноября 1940 командовал 3-й танковой дивизией, с которой участвовал в нападении фашистской Германии на СССР. С октября 1941 командир 41-го танкового корпуса, с января 1942 по ноябрь 1943 (с перерывами) командующий 9-й армией на Восточном фронте. В феврале — марте 1944 командовал группой армий «Север», в апреле — июне 1944 — группой армий «Северная Украина», в июне — августе 1944 — группой армий «Центр». Считался «мастером отступления», проводил тактику «выжженной земли», отличался особой жестокостью. В августе — сентябре 1944 командующий войсками Запада, а с сентября 1944 — группой армий «Б» (во Франции). В апреле 1945 войска М. были разгромлены в ходе Рурской операции 1945 и 18 апреля капитулировали, после чего М. застрелился.
Модель (прообраз)
Модель (франц. modе'le, итал. modello, от лат. modulus — мера, мерило, образец, норма),
1) образец, служащий эталоном (стандартом) для серийного или массового воспроизведения (М. автомобиля, М. одежды и т. п.), а также тип, марка какого-либо изделия, конструкции.
2) Изделие (изготовленное из дерева, глины, воска, гипса и др.), с которого снимается форма для воспроизведения в другом материале (металле, гипсе, камне и др.). См. также Лекало , Литейная модель , Плаз , Шаблон .
3) Человек, позирующий художнику (натурщик), и вообще изображаемые объекты («натура»).
4) Устройство, воспроизводящее, имитирующее (обычно в уменьшенном, «игрушечном» масштабе) строение и действие какого-либо другого устройства («настоящего») в научных (см. ниже), практических (например, в производственных испытаниях) или спортивных (см. Моделизм ) целях.
Модельный комплект
Моде'льный компле'кт, совокупность элементов литейной технологической оснастки, предназначенной для образования внешних контуров и внутренних полостей отливки в литейной форме.
В состав М. к. входят: литейные модели , модельные и протяжные плиты, стержневые ящики, модели частей литниковой системы , формовочные и контрольные шаблоны, кондукторы, сушильные плиты и другая оснастка. В М. к. включаются также и специализированные опоки . В зависимости от технологии изготовления формы те или иные элементы могут отсутствовать.
Материалом для М. к. служат древесина, пластмасса, металл, гипс и др. Выбор материала определяется характером производства, программой изготовления форм, требованиями к размерной точности и качеству поверхности отливки. В СССР по деревянным М. к. получают свыше 60 % отливок. Существует тенденция увеличения выпуска отливок по металлическим и пластмассовым М. к. Для отливок из всех сплавов М. к. изготовляют с учётом линейной усадки сплавов.
По прочности деревянные М. к. подразделяются на три класса. Класс прочности определяет конструкцию и качество изготовления М. к., что в свою очередь определяет точность его размеров и долговечность. По точности изготовления деревянные М. к. разбивают на три класса в зависимости от требуемого класса точности отливки; точность М. к. должна превышать требуемую точность отливки. В необходимых случаях быстроизнашиваемые части деревянных моделей армируют металлом. Износостойкость металлических М. к. повышают преимущественно хромированием деталей. При изготовлении деревянных М. к. используют нормализованные элементы. Основным оборудованием модельных цехов или участков являются деревообрабатывающие станки. Металлические М. к. изготовляют в металломодельных отделениях инструментальных цехов или в металломодельных цехах. Крупные модельные производства обслуживают несколько литейных цехов. Для изготовления форм и стержней из термореактивных материалов (оболочковые формы и стержни, объёмные стержни, твердеющие в «горячих ящиках») применяется специальная металлическая оснастка (обычно из серого чугуна), выдерживающая нагрев до 400 °С.