Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Техническая литература » Шпаргалка по общей электронике и электротехнике - Ольга Косарева

Шпаргалка по общей электронике и электротехнике - Ольга Косарева

Читать онлайн Шпаргалка по общей электронике и электротехнике - Ольга Косарева

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 14 15 16 17 18 19 20 21 22 ... 35
Перейти на страницу:

Относительное постоянство напряжения на газотроне получается не за счет режима катодного напряжения, характерного для приборов тлеющего разряда. В газотронах площадь катода не изменяется, но при возрастании тока сопротивление прибора постоянному току уменьшается, так как увеличиваются ионизация и соответственно количество электронов и ионов в единице объема. Кроме того, приближается к катоду положительный объемный заряд ионов, что равносильно уменьшению расстояния «анод – катод».

В газотроне распределение потенциала в пространстве «анод – катод» примерно такое же, как в приборах тлеющего разряда, но величина анодного напряжения меньше и около катода имеется потенциальный барьер, как в электронных лампах.

Катод в газотроне работает в тяжелых условиях вследствие бомбардировки его положительными ионами. Имея сравнительно большую массу, ионы разрушают оксидный слой, если их скорость превысит допустимое значение.

45. ТИРАТРОНЫ ДУГОВОГО РАЗРЯДА

Тиратроны с накаленным катодом, работающие подобно газотронам в режиме дугового разряда, используют для выпрямления переменного тока и как реле в автоматике, телеуправлении, импульсной технике, радиолокации и других областях.

По многим свойствам и по устройству тиратроны сходны с газотронами, но сетка позволяет управлять величиной напряжения возникновения разряда.

Сетка в тиратронах должна быть такой, чтобы разряд проходил только через нее, а не обходным путем. Поэтому сетка сама или в сочетании с тепловым экраном охватывает катод почти со всех сторон. Рабочая часть сетки делается с несколькими отверстиями, а остальная ее часть представляет собой экран. У некоторых тиратронов небольшой мощности конструкция электродов почти такая же, как у электронных ламп.

Катод и анод в тиратроне работают также, как в газотроне. Особенности работы и правило эксплуатации газотронов полностью относятся и к тиратронам.

Роль сетки в тиратроне заключается в том, чтобы при положительном напряжении анода держать тиратрон в запертом состоянии с помощью отрицательного напряжения сетки. А при уменьшении этого напряжения или повышении анодного напряжения возникает разряд, т. е. тиратрон отпирается. Чем больше отрицательное напряжение сетки, тем при более высоком анодном напряжении возникает разряд. Это объясняется тем, что при отрицательном сеточном напряжении в промежутке «сетка – катод» создается высокий потенциальный барьер для электронов, эмитированных катодом. Электроны не смогут преодолевать этот барьер и пролететь к аноду. Уменьшение отрицательного потенциала сетки или увеличение анодного напряжения понижает потенциальный барьер. Когда электроны начинают его преодолевать, то они движутся к аноду, набирают скорость, нужную для ионизации, процесс ионизации лавинообразно нарастает и возникает дуговой разряд.

Зависимость между анодным напряжением возникновения разряда и напряжением сетки показывает пусковая характеристика или характеристика зажигания. Она снимается с помощью такой же схемы, как и для исследования вакуумного триода, но с ограничительным резистором в анодной цепи. Удобнее снимать ее так. Для каждой точки сначала устанавливают анодное напряжение, равное нулю, и некоторое отрицательное напряжение сетки. Затем увеличивают анодное напряжение и замечают его значение при возникновении разряда. Далее понижают анодное напряжение до нуля, снимают следующую точку и т. д.

Пусковая характеристика показывает, что с увеличением отрицательного напряжения сетки повышается анодное напряжение, необходимое для возникновения разряда.

Пусковые характеристики при работе тиратрона с переменным напряжением несколько отличаются от статических пусковых характеристик, снятых на постоянном токе. Это объясняется тем, что при переменном напряжении влияет предразрядный (предпусковой)сеточный ток. Он возникает вследствие того, что во время отрицательного полупериода, когда тиратрон заперт, рекомбинация происходит не мгновенно и между электродами имеются электроны и ионы. Это служит причиной возникновения обратного анодного тока. Вместе с тем положительные ионы притягиваются к отрицательно заряженной сетке, образуя в ее цепи предразрядный ток. В образовании предразряд-ного тока может также играть роль термоэлектронная эмиссия сетки. Чем больше анодный ток и выше частота, тем сильнее предразрядный ток. Наличие такого тока облегчает зажигание тиратрона.

46. ЭЛЕКТРОННО-ЛУЧЕВЫЕ ТРУБКИ

К электронно-лучевым приборам относятся электронно-лучевые трубки для осциллографии, приема телевизионных изображений и индикаторных устройств радиолокаторов, для передачи телевизионных изображений, запоминающие трубки для электронно-вычислительных машин, электронно-лучевые переключатели и другие приборы. Во всех этих приборах создается тонкий пучок электронов (луч), управляемый с помощью электрического или магнитного поля или обоими полями.

Трубки могут быть с фокусировкой электронного луча электрическим или магнитным полем и с электрическим или магнитным отклонением луча. В зависимости от цвета изображения на люминесцирующем экране бывают трубки с зеленым, оранжевым или желто-оранжевым свечением – для визуального наблюдения, синим – для фотографирования осциллограмм, белым или трехцветным – для приема телевизионных изображений.

Электронно-лучевые трубки с электростатическим управлением, т. е. с фокусировкой и отклонением луча электрическим полем, называемые для краткости электростатическими трубками, особенно широко применяют в осциллографах.

Баллон трубки имеет цилиндрическую форму с расширением в виде конуса, а иногда в виде цилиндра. На внутреннюю поверхность основания расширенной части нанесен люминесцирующий экран – слой веществ, способных давать свечение под ударами электронов. Внутри трубки расположены электроды, имеющие выводы на штырьки цоколя.

Катод обычно бывает оксидный косвенного накала в виде цилиндра с подогревателем. Вывод катода иногда совмещен с одним выводом подогревателя. Оксидный слой нанесен на донышко катода. Вокруг катода располагается управляющий электрод, называемый модулятором, цилиндрической формы с отверстием в донышке. Этот катод служит для управления плотностью электронного потока и для предварительной фокусировки его.

На модулятор подается отрицательное напряжение. С увеличением этого напряжения все больше электронов возвращается на катод. При некотором отрицательном напряжении модулятора трубка запирается.

Следующие электроды, также цилиндрической формы, являются анодами. В простейшем случае их только два. На втором аноде напряжение бывает от 500 В до нескольких киловольт, а на первом аноде напряжение в несколько раз меньше. Внутри анодов обычно имеются перегородки с отверстиями (диафрагмы).

Под действием ускоряющего поля анодов электроны приобретают значительную скорость. Окончательная фокусировка электронного потока осуществляются с помощью неоднородного электрического поля в пространстве между анодами, а также благодаря диафрагмам. Более сложные фокусирующие системы состоят из большего числа цилиндров.

Система, состоящая из катода, модулятора и анодов, называется электронным прожектором (электронной пушкой) и служит для создания электронного луча, т. е. тонкого потока электронов, летящих с большой скоростью от второго анода к люминесцирующе-муэкрану.

Отклонение электронного луча и светящегося пятна на экране пропорционально напряжению на отклоняющихся пластинах. Коэффициент пропорциональности в этой зависимости называется чувствительностью трубки.

47. ОСОБЕННОСТИ РАБОТЫ ЛАМП НА СВЕРХВЫСОКИХ ЧАСТОТАХ

Лампы для средних и коротких волн работают неудовлетворительно на СВЧ, что объясняется следующими причинами.

Влияние междуэлектродных емкостей и индук-тивностей выводов. Емкости и индуктивности сильно влияют на работу ламп в диапазоне СВЧ. Они изменяют параметры колебательных систем, подключенных к лампе. В результате уменьшается собственная частота колебательных систем и становится невозможной настройка их на частоту выше некоторой предельной.

Для каждой лампы характерна некоторая предельная частота, которая соответствует резонансной частоте колебательного контура, получающегося при коротком замыкании выводов от электродов лампы.

Индуктивности выводов и междуэлектродные емкости, будучи включены в те или иные цепи лампы, создают нежелательные положительные или отрицательные обратные связи и фазовые сдвиги, ухудшающие работу схемы. Особенно сильно влияет индуктивность катодного вывода. Она входит одновременно в анодную и сеточную цепи и создает значительную обратную связь, вследствие которой изменяется режим работы и уменьшается входное сопротивление лампы, на которое нагружается источник усиливаемого переменного напряжения. Междуэлектродные емкости также способствуют уменьшению входного сопротивления лампы. Кроме того, эти емкости, имея на сверхвысоких частотах весьма небольшое сопротивление, могут вызывать в более мощных лампах появление значительных емкостных токов, нагревающих выводы от электродов и создающих дополнительные потери энергии.

1 ... 14 15 16 17 18 19 20 21 22 ... 35
Перейти на страницу:
Тут вы можете бесплатно читать книгу Шпаргалка по общей электронике и электротехнике - Ольга Косарева.
Комментарии