Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Читать онлайн ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р.

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 182 183 184 185 186 187 188 189 190 ... 233
Перейти на страницу:

В случае Гелернтера и его геометрической машины, сам Гелернтер, возможно, не нашел бы доказательства Паппуса, все же механизмы, создавшие это доказательство, лежали достаточно близко к поверхности программы, так что ее трудно назвать самостоятельным геометром. Если бы программа продолжала удивлять людей, снова и снова выдавая новые оригинальные доказательства, каждое из которых основывалось бы на гениальном прозрении, а не на определенных стандартных методах, то тогда у нас не было бы сомнений в том, что перед нами — настоящий геометр. Однако этого не случилось.

Кто сочиняет компьютерную музыку?

Различие между автором и мета-автором становится особенно заметно в случае компьютерной музыки. По-видимому, во время акта сочинительства программа может иметь различные уровни автономии. Один из уровней проиллюстрирован на примере пьесы, мета-автор которой — Макс Матьюс, работающий в лабораториях компании «Белл». Он ввел в компьютер ноты двух маршей — «Когда Джонни идет, маршируя, домой» и «Британские гренадеры» — и попросил его создать новую пьесу которая начиналась бы с «Джонни» и постепенно переходила в «Гренадеров». В середине получившейся пьесы «Джонни», действительно, полностью исчезает, и мы слышим только «Гренадеров». После чего процесс начинает идти в обратном направлении, и пьеса заканчивается мелодией «Джонни» , как и в начале. По словам Матьюса, это:

тошнотворное музыкальное переживание, которое, тем не менее, не лишено интереса — в особенности, в области ритмического превращения «Гренадеры» написаны в темпе 2/4, в тональности фа мажор, а «Джонни» — в темпе 6/8 в тональности ми минор. Переход от 2/4 к 6/8 легко заметен, при этом такой переход был бы очень трудной задачей для музыканта-человека. Модуляция из фа мажора в ми минор, включающая замену двух нот гаммы, режет ухо — более плавный переход, без сомнения был бы лучшим решением.[71]

Получившаяся пьеса довольно забавна, хотя местами довольно помпезна и запутана.

Сочиняет ли музыку сам компьютер? Подобных вопросов лучше не задавать — однако их трудно полностью игнорировать. Ответить на них нелегко. Алгоритмы здесь четко определены, просты и понятны. Сложных и запутанных вычислений, самообучающихся программ и случайных процессов здесь нет — машина функционирует совершенно механически и прямолинейно. Однако результатом является последовательность звуков, не запланированных композитором во всех деталях, хотя общая структура произведения полностью и точно определена. Поэтому композитор часто бывает удивлен — и приятно удивлен — конкретным воплощением своих идей. Именно в этом смысле можно сказать, что компьютер сочиняет музыку. Мы называем этот процесс алгоритмической композицией и снова подчеркиваем тот факт, что алгоритмы здесь просты и прозрачны.[72]

Маттьюс сам отвечает на вопрос, который, по его мнению, лучше не задавать. Несмотря на его возражения, многие считают, что проще сказать, что эта пьеса была «сочинена компьютером». По моему мнению, это выражение передает ситуацию совершенно неверно. В этой программе не было структур, аналогичных «символам» мозга, и о ней никак нельзя было сказать, что она «думает» о том, что делает. Приписать создание подобной музыкальной пьесы компьютеру — все равно, что сказать, что автором этой книги является фототипическая машина, оснащенная компьютерной техникой, на которой книга была составлена — машина, автоматически (и часто неверно) переносящая слова со строчки на строчку.

В связи с этим возникает вопрос, отходящий немного в сторону от ИИ. Когда мы видим слово «Я» или «мне» в тексте, к чему мы его относим? Например, подумайте о фразе «ВЫМОЙ МЕНЯ», которую иногда можно увидеть на грязном кузове грузовика. Кого это «меня»? Может быть, это какой-то несчастный заброшенный ребенок, который, желая быть вымытым, нацарапал эти слова на ближайшей поверхности? Или же это грузовик, требующий купания? Или сама фраза желает принять душ? А может быть, это русский язык ратует за собственную чистоту? Эту игру можно продолжать до бесконечности. В данном случае, эта фраза — только шутка имеется в виду, что мы должны на определенном уровне предположить, что эти слова написал сам грузовик, требующий, чтобы его вымыли. С другой стороны, эти слова ясно воспринимаются как написанные ребенком, и мы находим эту ошибочную интерпретацию забавной. Эта игра основана на прочтении слова «меня» на неправильном уровне.

Именно такой тип двусмысленности возник в этой книге, сначала в «Акростиконтрапунктусе» и позже в обсуждении Геделевой строки G (и ее родственников). Мы дали разбивальным записям следующую интерпретацию «Меня нельзя воспроизвести на патефоне X», интерпретацией недоказуемого суждения было «Меня нельзя доказать в формальной системе X» Возьмем последнее предложение. Где еще вы встречали суждение с местоимением «я», прочитав которое, вы автоматически предположили, что «я» относится не к человеку, произносящему это предложение, но к самому предложению? Я думаю, таких случаев очень немного. Слово «я» когда оно появляется, например, в Шекспировском сонете, относится не к четырнадцатистрочной поэтической форме, напечатанной на странице, а к существу из плоти и крови, стоящему за этими строчками.

Как далеко мы обычно заходим, пытаясь определить, к кому относится «я» в предложении? Мне кажется, что ответ заключается в том, что мы пытаемся найти мыслящее существо, которому можно приписать авторство данных строк. Но что такое «мыслящее существо»? Нечто такое, с чем мы можем с легкостью сравнить самих себя. Есть ли характер у Вайзенбаумовой программы «Доктор»? И если да, то чей это характер? Недавно на страницах журнала «Science» появился спор на эту тему.

Это возвращает нас к вопросу о том, кто же на самом деле сочиняет компьютерную музыку. В большинстве случаев, за подобными программами стоит человеческий разум, и компьютер используется, с большей или меньшей изобретательностью, как инструмент для воплощения человеческих идей. Программа, которая это исполняет, на нас совсем не похожа. Это простой и бесхитростный набор команд не обладающий гибкостью, пониманием того, что он делает, или самосознанием. Если когда-нибудь люди создадут программы с этими свойствами, и эти программы начнут сочинять музыкальные произведения, тогда мне кажется, наступит время разделить наше восхищение между программистом, создавшим такую замечательную программу, и самой программой обладающей музыкальным вкусом. Я думаю, что это случится только тогда, когда внутренняя структура программ будет основываться на чем-то, напоминающем «символы» в нашем мозгу и их пусковые механизмы, которые отвечают за сложное понятие значения. Подобная внутренняя структура наделила бы программу такими свойствами, с которыми мы могли бы до определенной степени идентифицировать себя. Но до тех пор мне не кажется правильным говорить «Эта пьеса была написана компьютером».

Доказательство теорем и упрощение программ

Вернемся теперь к истории ИИ. Одним из ранних шагов в этом направлении была попытка создания программы, способной доказывать теоремы. Концептуально это то же самое, что создание программы, способной искать деривацию MU в системе MIU — с той разницей, что формальные системы здесь часто были сложнее, чем система MIU. Это были версии исчисления предикатов, представляющего собой расширенный — с использованием кванторов — вариант исчисления высказываний. В действительности большинство правил исчисления предикатов содержится в ТТЧ. Трюк при написании такой программы заключается в том, чтобы снабдить ее чувством направления, чтобы программа не блуждала по всему пространству возможностей, а следовала лишь по «важным» тропинкам, которые, в соответствии с некими разумными критериями могут привести к нужной строчке.

В этой книге мы не рассматривали подобные вопросы подробно. В самом деле, как мы можем сказать, когда продвигаемся в направлении теоремы, а когда наши поиски — пустая трата времени? Этот вопрос я попытался проиллюстрировать на примере головоломки MU. Разумеется, окончательный ответ на него дать невозможно. Именно в этом — суть Ограничительных Теорем, поскольку если бы мы всегда знали, в каком направлении идти, то могли бы построить алгоритм для доказательства любой теоремы, — а это противоречит Теореме Чёрча. Такого алгоритма не существует. (Предоставляю читателю догадаться, почему это следует из Теоремы Чёрча.) Однако это не означает, что невозможно развить интуитивное чувство того, какие дороги ведут к цели и какие уводят в сторону. Лучшие программы обладают сложной эвристикой, позволяющей им делать заключения в исчислении предикатов так же быстро, как это делают способные люди.

1 ... 182 183 184 185 186 187 188 189 190 ... 233
Перейти на страницу:
Тут вы можете бесплатно читать книгу ГЕДЕЛЬ, ЭШЕР, БАХ: эта бесконечная гирлянда - Хофштадтер Даглас Р..
Комментарии