UNIX: разработка сетевых приложений - Уильям Стивенс
Шрифт:
Интервал:
Закладка:
25.2. Управляемый сигналом ввод-вывод для сокетов
Для использования управляемого сигналом ввода-вывода с сокетом (SIGIO) необходимо, чтобы процесс выполнил три следующих действия:
1. Установил обработчик сигнала SIGIO.
2. Задал владельца сокета. Обычно это выполняется с помощью команды F_SETOWN функции fcntl (см. табл. 7.9).
3. Разрешил управляемый сигналом ввод-вывод для данного сокета, что обычно выполняется с помощью команды F_SETFL функции fcntl или путем включения флага O_ASYNC (см. табл. 7.9).
ПРИМЕЧАНИЕФлаг O_ASYNC был добавлен в POSIX относительно поздно. Его поддержка пока реализована в небольшом количестве систем. Для разрешения управляемого сигналом ввода-вывода в листинге 25.2 вместо этого флага мы используем функцию ioctl с флагом FIOASYNC. Следует отметить, что разработчики POSIX выбрали не самое удачное имя для нового флага: ему больше подходит имя O_SIGIO.
Обработчик сигнала должен быть установлен до того, как будет задан владелец сокета. В Беркли-реализациях порядок вызова этих функций не имеет значения, поскольку по умолчанию сигнал SIGIO игнорируется. Поэтому если изменить порядок вызова функций на противоположный, появится небольшая вероятность того, что сигнал будет сгенерирован после вызова функции fcntl, но перед вызовом функции signal. Однако если это произойдет, то сигнал просто не будет учитываться. В SVR4 SIGIO определяется в заголовочном файле <sys/signal.h> как SIGPOLL, а действием по умолчанию для SIGPOLL является прерывание процесса. Таким образом, в SVR4 желательно быть уверенным в том, что обработчик сигнала установлен до задания владельца сокета.
Перевести сокет в режим ввода-вывода, управляемого сигналом, несложно. Сложнее определить условия, которые должны приводить к генерации сигнала SIGIO для владельца сокета. Это зависит от транспортного протокола.
Сигнал SIGIO и сокеты UDP
Использовать ввод-вывод, управляемый сигналом, с сокетами UDP довольно легко. Сигнал генерируется в следующих случаях:
■ на сокет прибывает дейтаграмма;
■ на сокете возникает асинхронная ошибка.
Таким образом, когда мы перехватываем сигнал SIGIO для сокета UDP, вызывается функция recvfrom как для чтения дейтаграммы, так и для получения асинхронной ошибки. Асинхронные ошибки, касающиеся UDP-сокетов, обсуждались в разделе 8.9. Напомним, что эти сигналы генерируются, только если сокет UDP является присоединенным (создан с помощью вызова функции connect).
ПРИМЕЧАНИЕСигнал SIGIO генерируется для этих двух условий путем вызова макроса sorwakeup, описываемого в книге [128, с. 775, с. 779, с. 784].
Сигнал SIGIO и сокеты TCP
К сожалению, использовать управляемый сигналом ввод-вывод для сокетов TCP почти бесполезно. Проблема состоит в том, что сигнал генерируется слишком часто, а само по себе возникновение сигнала не позволяет выяснить, что произошло. Как отмечается в [128, с. 439], генерацию сигнала SIGIO для TCP-сокета вызывают все нижеперечисленные ситуации (при условии, что управляемый сигналом ввод-вывод разрешен):
■ на прослушиваемом сокете выполнен запрос на соединение;
■ инициирован запрос на отключение;
■ запрос на отключение выполнен;
■ половина соединения закрыта;
■ данные доставлены на сокет;
■ данные отправлены с сокета (то есть в буфере отправки имеется свободное место);
■ произошла асинхронная ошибка.
Например, если одновременно осуществляются и чтение, и запись в TCP-сокет, то сигнал SIGIO генерируется, когда поступают новые данные и когда подтверждается прием ранее записанных данных, а обработчик сигнала не имеет возможности различить эти сигналы. Если используется сигнал SIGIO, то для предотвращения блокирования при выполнении функции read или write TCP-сокет должен находиться в режиме неблокируемого ввода-вывода. Следует использовать сигнал SIGIO лишь с прослушиваемым сокетом TCP, поскольку для прослушиваемого сокета этот сигнал генерируется только при завершении установления нового соединения.
Единственное реальное применение управляемого сигналом ввода-вывода с сокетами, которое удалось обнаружить автору, — это сервер NTP (Network Time Protocol — сетевой протокол синхронизации времени), использующий протокол UDP. Основной цикл этого сервера получает дейтаграмму от клиента и посылает ответ. Но обработка клиентского запроса на этом сервере требует некоторого ненулевого количества времени (больше, чем для нашего тривиального эхо-сервеpa). Серверу важно записать точные отметки времени для каждой принимаемой дейтаграммы, поскольку это значение возвращается клиенту и используется им для вычисления времени обращения к серверу (RTT). На рис. 25.1 показаны два варианта построения такого UDP-сервера.
Рис. 25.1. Два варианта построения UDP-сервера
Большинство UDP-серверов (включая наш эхо-сервер, описанный в главе 8) построены так, как показано на рисунке слева. Однако NTP-сервер использует способ, показанный справа: когда прибывает новая дейтаграмма, она читается обработчиком сигнала SIGIO, который также записывает время прибытия дейтаграммы. Далее дейтаграмма помещается в другую очередь внутри процесса, из которой она будет извлечена, а затем обработана основным циклом сервера. Это усложняет код сервера, но зато обеспечивает точные отметки времени прибытия дейтаграмм.
ПРИМЕЧАНИЕВспомните листинг 22.3: процесс может установить параметр сокета IP_RECVDSTADDR, чтобы получить адрес получателя пришедшей UDP-дейтаграммы. Можно возразить, что вместе с полученной дейтаграммой UDP должны быть возвращены два дополнительных фрагмента информации — интерфейс, на котором была получена дейтаграмма (этот интерфейс может отличаться от адреса получателя, если узел использует более типичную модель системы с гибкой привязкой), и время прибытия дейтаграммы.
Для IPv6 интерфейс, на котором была получена дейтаграмма, можно получить, если включен параметр сокета IPV6_PKTINFO (см. раздел 22.8). Аналогичный параметр сокета IP_RECVIF для IPv4 описывался в разделе 22.2.
В FreeBSD также предусмотрен параметр сокета SO_TIMESTAMP, возвращающий время получения дейтаграммы как вспомогательные данные в структуре timeval. В Linux существует флаг SIOCGSTAMP для функции ioctl, которая возвращает структуру timeval, содержащую время прибытия дейтаграммы.
25.3. Эхо-сервер UDP с использованием сигнала SIGIO
В этом разделе мы приведем пример, аналогичный правой части рис. 25.1: UDP-сервер, использующий сигнал SIGIO для получения приходящих дейтаграмм. Этот пример также иллюстрирует использование надежных сигналов стандарта POSIX.
В данном случае клиент совсем не изменен по сравнению с листингами 8.3 и 8.4, а функция сервера main не изменилась по сравнению с листингом 8.1. Единственные внесенные изменения касаются функции dg_echo, которая будет приведена в следующих четырех листингах. В листинге 25.1[1] представлены глобальные объявления.
Листинг 25.1. Глобальные объявления
//sigio/dgecho01.c
1 #include "unp.h"
2 static int sockfd;
3 #define QSIZE 8 /* размер входной очереди */
4 #define MAXDG 4096 /* максимальный размер дейтаграммы */
5 typedef struct {
6 void *dg_data; /* указатель на текущую дейтаграмму */
7 size_t dg_len; /* длина дейтаграммы */
8 struct sockaddr *dg_sa; /* указатель на sockaddr{} с адресом клиента */
9 socklen_t dg_salen; /* длина sockaddr{} */
10 } DG;
11 static DG dg[QSIZE]; /* очередь дейтаграмм для обработки */
12 static long cntread[QSIZE +1]; /* диагностический счетчик */
13 static int iget; /* следующий элемент для обработки в основном цикле */
14 static int iput; /* следующий элемент для считывания обработчиком
сигналов */
15 static int nqueue; /* количество дейтаграмм в очереди на обработку
в основном цикле */
16 static socklen_t clilen; /* максимальная длина sockaddr{} */
17 static void sig_io(int);
18 static void sig_hup(int);
Очередь принимаемых дейтаграмм3-12 Обработчик сигнала SIGIO помещает приходящие дейтаграммы в очередь. Эта очередь является массивом структур DG, который интерпретируется как кольцевой буфер. Каждая структура содержит указатель на принятую дейтаграмму, ее длину и указатель на структуру адреса сокета, содержащую адрес протокола клиента и размер адреса протокола. В памяти размещается столько этих структур, сколько указано в QSIZE (в данном случае 8), и в листинге 25.2 будет видно, что функция dg_echo для размещения в памяти всех структур дейтаграмм и адресов сокетов вызывает функцию malloc. Также происходит выделение памяти под диагностический счетчик cntread, который будет рассмотрен чуть ниже. На рис. 25.2 приведен массив структур, при этом предполагается, что первый элемент указывает на 150-байтовую дейтаграмму, а длина связанного с ней адреса сокета равна 16.