Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Мир, созданный химиками. От философского камня до графена - Петр Образцов

Мир, созданный химиками. От философского камня до графена - Петр Образцов

Читать онлайн Мир, созданный химиками. От философского камня до графена - Петр Образцов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 15 16 17 18 19 20 21 22 23 ... 53
Перейти на страницу:

А на Титане, спутнике планеты Сатурн, своеобразные формы бескислородной жизни уже почти обнаружены. Во всяком случае, наблюдения космического зонда «Кассини» позволяют выдвинуть такую гипотезу. Этот зонд, названный так в честь итальянского астронома XVII века, в 2004 году стал первым искусственным спутником Сатурна. Согласно программе исследований, приборы «Кассини» больше всего времени тратят на изучение именно естественного спутника Титана, который оказался удивительным образованием прежде всего потому, что на нем возможна жизнь. Разумеется, «зеленых человечков» там нет, но зато вполне могут существовать крайне необычные, не интересующиеся кислородом микроорганизмы. Для дыхания они используют водород, в земных условиях в естественном виде практически не встречающийся из-за своей взрывчатости. Тот самый водород, который выделяют земные лорициферы.

Проанализировав последние данные спектрометров «Кассини», ученые нашли новые подтверждения гипотезе о странных микроорганизмах. Если эти крошки используют водород, то на поверхности спутника его должно быть намного меньше, чем в верхних слоях. Так и оказалось: водорода на поверхности практически нет, и то же самое относится к ацетилену C2H2 — газу, которым эти микроорганизмы должны питаться. На земле ацетилен используют для высокотемпературной сварки, именно этот газ образуется при обработке карбида кальция водой (см. главу 1). Кроме того, если «нормальные» микроорганизмы в качестве продукта жизнедеятельности выделяют углекислый газ, то микроорганизмы Титана — метан CH4, которого в атмосфере спутника очень много.

Разумеется, обнаружение метана и отсутствие ацетилена и водорода вблизи поверхности не является строгим доказательством существования микробной жизни на Титане. Таким доказательством могло бы стать прямое наблюдение микроорганизмов, а еще лучше — забор проб с поверхности спутника и анализ их содержимого. «Кассини» такого сделать не может, хотя в свое время с этого аппарата был произведен сброс зонда «Гюйгенс», который передал на «Кассини» несколько сотен фотографий и данные различных приборов.

К сожалению, микроорганизмов «Гюйгенс» не обнаружил. Но это еще ничего не значит — в свое время биохимики уговорили генерального конструктора Сергея Королева установить на одном из лунных спускаемых аппаратов химическую микролабораторию для обнаружения внеземной жизни. Практичный Королев потребовал сначала выбросить прибор несколько поближе, в казахстанскую степь около космодрома Байконур. Жизни на Земле лаборатория не нашла, и прибор Королев на Луну не отправил. Генеральный конструктор вообще-то был очень жестким и строгим руководителем, но говорят, что в этом случае он не устроил разнос горе-биохимикам, а лишь долго смеялся.

Сероводородная планета

Казалось бы, трудно себе представить еще более неприемлемые условия для жизни, чем те, в которых живут люциферы. Но природа постаралась — так называемые вестиментиферы, этакие червеобразные существа длиной два-три метра с боковыми выростами, спокойно обитают на глубинах до четырех километров вблизи трещин океанской коры, из которых просачиваются горячие газы. Эти газы нагревают воду до 300 °C, причем в воде огромна концентрация сероводорода H2S, обычно считающегося ядом для всего живого. Но вестиментиферы поглощают сероводород и делятся им с бактериями, которые живут прямо в теле вестиментифер, где они этот сероводород окисляют и синтезируют питательные вещества для своего хозяина. Такой вот симбиоз, причем абсолютно хозяину необходимый — у вестиментифер даже нет кишечника, они во всем полагаются на бактерии.

Способ питания вестиментифер живо напомнил мне старую-старую пародию на повесть фантаста Ивана Ефремова «Сердце Змеи». В этой повести наши земные астролетчики встречают жителей планеты, которые дышат не кислородом, а фтором. Физический контакт людей с этими ребятами невозможен, суперокислитель фтор реагирует даже с кислородом (о фторе см. главу 15). А пародист заставил землян встретиться с жителями, ха-ха, сероводородной планеты. Как известно, сероводород H2S является мерзопакостным продуктом работы кишечника, и все это довольно смешно, хотя повесть Ивана Ефремова вполне читабельна.

Еще более оригинальным обменом веществ обладает бактерия, обнаруженная учеными американского космического агентства НАСА, в котором, оказывается, есть специальный отдел астробиологии. Пока никаких живых организмов вне Земли не найдено, сотрудники отдела пытаются найти что-то необычное на нашей планете. И вот удача: в калифорнийском соленом озере Моно им удалось обнаружить бактерию, в которой фосфор в ДНК заменен мышьяком.

Это сенсация, до сей поры нам были известны живые организмы, состоящие только из углерода, кислорода, водорода, азота, серы и фосфора, не считая микроэлементов. Но в озере Моно фосфора оказалось мало, зато много мышьяка. Этот элемент находится в одной с фосфором V группе таблицы Менделеева и похож на фосфор по своим химическим свойствам, так что такая замена вполне возможна. Другое дело, что соединения мышьяка часто являются сильными ядами, однако и здесь удивляться нечему. Углерод тоже образует смертельно опасные соединения, например угарный газ, однако является основным элементом жизни, так что «мышьяковистый» организм вполне может существовать и на других планетах с ядовитыми морями.

Но чем бы ни питались эти странные морские и озерные гады, какой бы способ получения энергии они себе ни придумали, их тела все равно состоят из белков, веществ, по определению, не живых, но без которых жизнь невозможна.

Белки и белки

Есть такая кишечная бактерия эшерихия коли (E.coli), которую очень любят биохимики и генетики — с ней удобно проводить самые различные опыты, ведущие прямиком к замечательным открытиям. Так вот, установлено, что в клетке этой бактерии содержится около 3 тысяч различных белков. В организме же человека насчитывается около 5 миллионов белков. Эти пять миллионов выполняют самые разнообразные функции — каталитическую (ферменты), питательную (например, белки яйцеклетки), транспортную (перенос кислорода гемоглобином), защитную (антитела), сократительную (мышцы), структурную (коллаген соединительной ткани, кератин волос, кожи, ногтей) и гормональную (гормон гипофиза). Поразительно, что все белки состоят хоть и из большого количества, но простых структурных блоков — аминокислот, связанных друг с другом в так называемые полипептидные цепи. Из этих полипептидных цепей и сделаны белки.

Первая аминокислота была выделена из желатина еще в 1820 году, но полный аминокислотный состав белков был расшифрован только через сто с лишним лет — это довольно сложная работа. Оказалось, что белок с помощью различных ферментов, например пищеварительных, можно расщепить на аминокислоты. Именно это и происходит, когда правоверный мусульманин съедает пушкинский «ростбиф окровавленный» из говядины, а неверный — свиную рульку. Все аминокислоты представляют собой производные карбоновых кислот, у которых один атом водорода замещен на аминогруппу — NH2.

По правилам химической номенклатуры, атомы углерода маркируются греческими буквами альфа, бета, гамма и так далее, причем первым альфа-атомом является ближайший к карбоновой группе — COOH атом углерода. Разумеется, аминогруппа может заместить атом водорода у любого атома углерода, хоть альфа, хоть гамма, хоть омега. Однако выяснилось, что в состав природных белков входят только альфа-аминокислоты. Если угодно, это одна из загадок природы.

В составе белков открыто 20 различных альфа-аминокислот, все они различаются по составу радикала R. Эти 20 аминокислот делятся пополам на заменимые, которые могут синтезироваться в организме человека (и животных), и незаменимые, которые необходимо получать из пищи. В принципе совершенно не важно, из какой пищи — растительной или животной — можно и нужно получать незаменимые аминокислоты, однако давно известно, что в съедобных растениях слишком мало трех аминокислот, которые называются лизин, метионин и триптофан. Вегетарианцы могут не расстраиваться — недостаток этих аминокислот легко восполнить, например, из молока, творога и яиц. Особо строгие вегетарианцы, их называют веганами, которые яйца и молочные продукты не едят, могут добрать лизина, метионина и триптофана из орехов. Впрочем, в горохе и прочих бобах этих аминокислот несколько больше, чем в другой растительной пище.

У аминокислот имеется еще одно очень важное свойство. В главе 3 мы обсуждали понятие изомерии, то есть существование различных по строению, но одинаковых по составу веществ. Для аминокислот также известна изомерия, в данном случае это оптическая или стереохимическая изомерия. Например, для простейшей альфа-аминокислоты аланина (альфа-аминопропионовая кислота, если следовать терминологии) известны два изомера:

1 ... 15 16 17 18 19 20 21 22 23 ... 53
Перейти на страницу:
Тут вы можете бесплатно читать книгу Мир, созданный химиками. От философского камня до графена - Петр Образцов.
Комментарии