Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Математика » Невероятно – не факт - Китайгородский Александр Исаакович

Невероятно – не факт - Китайгородский Александр Исаакович

Читать онлайн Невероятно – не факт - Китайгородский Александр Исаакович

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 15 16 17 18 19 20 21 22 23 ... 54
Перейти на страницу:

Вот такие и подобные проблемы решал Бейес в своей работе.

Одна из формул, выведенных Бейесом, отвечает на вопрос, который интересовал неудачливую пару, попавшую в полосу дождей. Если какое-то событие произошло несколько раз, то можно высчитать, какова вероятность его свершения и в следующий раз. Формула, как говорилось, очень простая, и её можно привести здесь, прибегнув – увы! – к алгебраическим символам, навевающим на некоторых все же страх или скуку: p=(q+1)/(q+2) (вероятность равна дроби, числитель которой равен числу происшедших событий плюс единица, а знаменатель равен этому же числу плюс два). Значит, если дождь идёт один день, то вероятность, что он будет идти завтра, равна 2/3, если дождь идёт два дня, то назавтра вы можете ждать такой же погоды с вероятностью 3/4, три дня – 4/5… восемь дней – 9/10. Просто, не правда ли?

Но если бездумно применять эту формулу, то можно прийти к абсурду. Например, я два раза набирал по телефону 01, вызывая пожарную команду, и она приезжала: значит, если я буду вызывать её третий раз, то она прибудет тушить пожар с вероятностью в 75 процентов. Глупо ведь? Конечно, глупо. Или в этом году с Эйфелевой башни бросились и разбились две девушки, обманутые женихами. Значит, следующая имеет шанс из четырех остаться в живых. Глупо? Конечно, глупо. Но при чём здесь наша простая формула? Прочитав внимательно работу этого превосходного математика, мы увидим, что формула введена в предположении, что о вероятности единичного события нам неизвестно ровно ничего, то есть что эта вероятность может быть любой – от 0 до 1.

Итак, формулу Бейеса следует применять в том случае, когда мы ровно ничего не знаем о единичном событии. Так ли обстоит дело с дождливой погодой?

На основании многолетних наблюдений в городе Брюсселе установлено, что если дождь идёт 1 день, то вероятность того, что он будет идти и завтра, равняется 0,63; если дождь идёт 2 дня – его вероятность на завтра равна 0,68, 3 дня – 0,70, 5 дней – 0,73. Согласно же формуле Бейеса мы должны были бы иметь 0,66; 0,75; 0,80 и 0,86. Хотя опыт и теория близки, полного совпадения нет: формула оказывается несколько более пессимистична, чем реальная действительность.

Лучше совпадают с выводами теоремы Бейеса данные, полученные при наблюдении смены температуры. По данным того же города Брюсселя, вероятность того, что завтра температура будет такой же, как и вчера, равна 0,75; если 2 дня температура была неизменной, то она останется такой же и завтра с вероятностью 0,76; если 3 дня неизменна, то сохранится и завтра с вероятностью 0,78; если 5 дней, то с вероятностью 0,83, и если температура не менялась 10 дней, то с вероятностью 0,85 она останется той же и в 11-й день.

Как видите, предсказание по принципу «сегодня как вчера» имеет обоснование в теории вероятности. Большинство прогнозов погоды носит именно такой характер, а чтобы судить о научной мощи предсказаний, надо было бы скидывать со счётов все прогнозы типа «погода остаётся без изменений». Кажется, так метеорологи и поступают, когда испытывают новые теории и схемы предсказания погоды. Предвидение потепления или похолодания – вот в чём должно проявиться понимание законов климата.

Но вернёмся к работе Бейеса. Мы проиллюстрировали примерами лишь одну из формул его теории, касающихся вероятности повторения событий. Но оправданы также попытки предсказания будущего и тогда, когда ряд событий неоднороден и состоит из чередующихся удач и неудач. В этом случае формула Бейеса меняется лишь незначительно: в её знаменателе будет стоять полное число событий плюс 2. Например, если проведённая на курорте неделя (7 дней) порадовала нас всего лишь одним хорошим днём, то вероятность дождя на восьмой день нашего отдыха будет вычисляться так: P=(6+1)/(7+2)=7/9.

Если в баскетбол играет сильная команда «Спартак» со слабой командой, скажем текстильного института, и если, придя с опозданием к началу состязания, мы узнаем, что счёт 1 : 10 в пользу института, то мы все же не поставим и гривенника против рубля за команду студентов. Для предсказания исхода состязания формула, о которой идёт речь, явно без пользы. Она «работает» лишь в том случае, если нам ничего не известно о вероятностях выигрыша и проигрыша команд – участниц состязания. Вот если бы я не знал, кто играет, и не видел бы техники игры, тогда, зная счёт 1 : 10, я действительно имел бы право сделать заключение: вероятность того, что следующее очко заработает ведущая команда, равна 11/13.

Интересно применение работы Бейеса в случаях, когда наши заключения об исходе события делаются на основании комбинации априорного (доопытного) знания и знания результата опыта. Из полной колоды карт потеряли одну. Какую – неизвестно. Некто просто «с потолка» высказывает гипотезу, что потеряна пика. Ясно, что при отсутствии какого-либо дополнительного знания вероятность этой гипотезы равняется 1/4. Вероятность противоположного утверждения, что потеряна не пика, равна 3/4. Поскольку автор первой гипотезы настаивает на проверке своего утверждения, то ставит опыт. Из колоды берутся две карты, которые оказываются пиками. Нетрудно видеть, что сторонники второй гипотезы после этого опыта укрепляются в своём мнении, а шансы авторов первой упали.

Формулы Бейеса позволяют произвести и количественные оценки. Можно рассчитать, насколько изменились вероятности гипотез после того, как получена дополнительная информация. Мы не будем приводить формулы и производить вычисления, а подчеркнём лишь идейную сторону дела.

Довольно редко дело обстоит так, что после проведённого единичного эксперимента ошибочные гипотезы смело могут быть отброшены, а единственно правильная поставлена на пьедестал почёта. Большей частью разовый опыт лишь изменяет вероятность достоверности высказанных гипотез. Если одна из них «взяла верх» над другими не слишком значительно, то потребуется и второй эксперимент, а может быть, и третий, и сотый. По мере накопления информации вероятность правильной гипотезы будет постепенно расти. Впрочем, рост может быть и не монотонным, а на каком-то разе так называемая правильная гипотеза может здорово проиграть и даже совсем рухнуть. Так в примере урны с шарами дело может обстоять следующим образом: вытянув десять чёрных шаров, мы уже почти уверимся в том, что в ней нет шаров иного цвета, ан нет – одиннадцатый раз вытащили белый, и вопрос вновь остаётся открытым. В конце концов истина восторжествует и наступит ясность, и тогда опытное исследование может быть прекращено, и результат обнародован.

Имеется ряд проблем, в которых вероятности гипотез могут быть достаточно хорошо вычислены на каждом этапе исследования в зависимости от полученного объёма информации. В подобных случаях планирование эксперимента может быть поручено ЭВМ. Машина будет оценивать вероятности всех гипотез после каждого шага и остановится тогда, когда вероятность одной из гипотез станет настолько значительной, что её можно считать истиной.

Работы Томаса Бейеса лежат в основе современного подхода к эксперименту. Подход этот используется в генетических исследованиях, в теории военной стратегии, в исследовании движения ядерных частиц и во многих других областях деятельности людей.

Миллион цифр

В заголовке мы написали «миллион цифр», а точнее надо бы было сказать – миллион случайных цифр. Такая книжка, не содержащая ничего, кроме миллиона цифр, вышла в свет и нашла своих читателей. Возьмём ряд случайных цифр: 0, 1, 9, 6, 7… Что, собственно говоря, означает, что они образуют случайную последовательность? И кого интересует такой ряд? Начнём с ответа на второй вопрос.

Представьте себе, что вы проводите обширный эксперимент по агротехнике. Поле разбито на 1000 небольших участков, каждый из которых должен быть ухожен определённым способом. Пускай способов таких (агротехнических систем) 10. Занумеруем их. Теперь нужно решить, на каком участке какую агротехническую систему применить. Для этого каждому участку припишем какую-либо цифру от 0 до 9, и притом сделаем так, чтобы приписка была совершенно случайной. Только при случайной нумерации наши выводы о целесообразности того или иного способа обработки почвы будут лишены сознательной или бессознательной ошибки, связанной с тем, что для какого-то «излюбленного» способа выбираются лучшие участки.

1 ... 15 16 17 18 19 20 21 22 23 ... 54
Перейти на страницу:
Тут вы можете бесплатно читать книгу Невероятно – не факт - Китайгородский Александр Исаакович.
Комментарии