История всего - Нил Тайсон
Шрифт:
Интервал:
Закладка:
Данные спутника показывают, что для самых заметных отклонений от однообразия реликтового излучения характерен угол 1 градус, и это означает, что сумма ΩΜ + ΩΛ равняется 1,02 (±0,02). Так, в рамках границ экспериментально допустимой точности мы можем сделать вывод, что ΩΜ + ΩΛ = 1. Значит, пространство плоское. Результаты наблюдений за далекими сверхновыми типа Ia можно резюмировать строчкой ΩΛ — ΩΜ = 0,46. Если мы совместим этот результат с утверждением о том, что ΩΜ + ΩΛ = 1, мы получим следующие значения: ΩΜ = 0,27, а ΩΛ = 0,73; погрешность каждого из составляет несколько процентов. Как уже отмечалось ранее, это лучшие на сегодня предполагаемые значения двух ключевых космических параметров, имеющиеся в распоряжении у астрофизиков. Они демонстрируют, что на вещество — как на обычное, так и на темную материю — приходится лишь 27 % суммарной плотности вещества (или обычной энергии в его эквиваленте), в то время как на долю темной энергии приходится 73 %. Если хотите, можно рассматривать массовый эквивалент темной энергии — E/c2; тогда на долю темной энергии приходится 73 % всей массы Вселенной.
Ученые установили, что при ненулевом значении космологической постоянной относительное влияние вещества и темной энергии должны меняться с течением времени. С другой стороны, плоская Вселенная навсегда останется плоской, от своего рождения в результате Большого взрыва и вплоть до того бесконечного будущего, что ждет нас впереди. В плоской Вселенной сумма ΩΜ и ΩΛ всегда равна единице, а значит, если изменится одно слагаемое, и другое не сможет остаться неизменным.
В космические эпохи, наступившие вскоре после Большого взрыва, темная энергия не играла во Вселенной почти никакой роли. По сравнению с предстоящими вехами в ее истории, Вселенная тогда была столь мала, что на долю ΩΛ приходилось число немногим больше нуля, в то время как ΩΜ практически равнялась единице. В те времена Вселенная напоминала собой пространство без какой-либо космологической постоянной. Шло время, и значение ΩΜ постепенно уменьшалось, зато значение ΩΛ росло в обратной к нему пропорции, сумма же неизменно оставалась равной единице. Рано или поздно, через сотню миллиардов лет от сегодняшнего дня, ΩΜ упадет почти до нуля, зато ΩΛ будет расти и расти, пока не приблизится по своему значению к единице. Мы видим, что история плоской Вселенной с ненулевой космологической постоянной подразумевает переход от «ранних лет», когда темной энергии отводилась самая незначительная роль, к «настоящему», когда ΩΜ и ΩΛ были приблизительно равны, а затем и к бесконечному будущему, в котором вещество будет распределено по Вселенной столь разреженно, что ΩΜ будет бесконечно стремиться к нулю, хотя сумма двух Ω, все равно будет оставаться равной единице.
Наши наблюдения позволяют, с одной стороны, вычислить, что в данный момент в галактических кластерах величина. ΩΜ составляет примерно 0,25, с другой — наблюдения за реликтовым излучением и далекими сверхновыми звездами приводят значение, скорее близкое к 0,27. С учетом экспериментальной погрешности эти два значения можно считать «совпадающими». Если мы действительно живем во Вселенной с ненулевой космологической постоянной и если эта постоянная отвечает (в паре с веществом) за формирование плоской Вселенной, как это предсказывает инфляционная модель, тогда космологическая постоянная должна иметь значение, которое, в свою очередь, приближает значение ΩΛ к 0,7 с лишним. То есть оно в два с половиной раза больше значения ΩΜ. Другими словами, сейчас выполняет основную часть работы во имя того, чтобы сумма ΩΜ + ΩΛ равнялась единице. Это означает, что мы уже оставили позади ту эпоху, в которой вклад вещества и космологической постоянной в поддержание плоской формы Вселенной был равен (значение каждой Ω составило 0,5).
Прошло менее 10 лет, и прозвучавший двойной выстрел результатов наблюдений за сверхновыми звездами типа Ia и реликтовым излучением привел к переходу концепции темной энергии из статуса «какой-то там» идеи, на которой в свое время ненадолго остановился Эйнштейн, в статус непреложного космического факта о жизни. Если только в будущем не окажется, что все эти многочисленные данные получили неверную трактовку, были некорректно собраны или просто в корне неверны, нам останется лишь принять тот факт, что Вселенная никогда не сократится в размере и не прекратит свое существование. Вместо этого нас ждет довольно скучное будущее: через сотню миллиардов лет, когда большинство звезд уже выгорит, все, кроме самых ближайших галактик, навсегда исчезнет из нашего поля зрения.
К тому времени Млечный Путь соединится со своими ближайшими соседями, создав одну огромную — гигантскую! — галактику в буквальном смысле в настоящей космической глуши. В нашем ночном небе останется сколько-то звезд, мертвых еще функционирующих, и больше ничего. Астрофизикам будущего предстоит жить в весьма жестоком мире. Вокруг не будет ни одной галактики, которая помогла бы им отследить факт расширения Вселенной, и они, как и Эйнштейн, ошибочно предположат, что живут в статической Вселенной. Космологическая постоянная и ее темная энергия доведут Вселенную до состояния, в котором их нельзя будет не только измерить, но и в принципе вообразить.
Рекомендуем получать удовольствие от космологии, пока это еще возможно.
Глава 6
Одна Вселенная или множество?
В начале 1998 года мир космологии потрясло открытие, что мы живем в мире ускорения, в котором Вселенная не только постоянно расширяется, но и делает это все быстрее и быстрее. Тогда были объявлены первые результаты наблюдений за сверхновыми звездами, которые и помогли ученым прийти к заключению о расширении Вселенной. Сегодня, когда эта идея также окончательно заручилась поддержкой исследователей реликтового излучения (а у космологов было достаточно лет для того, чтобы пропустить через себя мысль о постоянно ускоряющемся космическом расширении), возникают два серьезных вопроса, и в поиске ответов на них космологи проводят дни и ночи: почему скорость расширения Вселенной растет, почему у этого ускорения именно такое значение и как оно характеризует Вселенную?
Простой ответ на первый вопрос перекладывает всю ответственность за ускорение расширения Вселенной на сам факт существования темной энергии же, что равнозначно, на наличие ненулевой космологической постоянной. Сама степень ускорения напрямую зависит от количества темной энергии на каждый кубический сантиметр пустого пространства: чем больше энергии, тем быстрее ускорение. Так, если бы ученые смогли объяснить, откуда берется эта самая темная энергия и почему сегодня во Вселенной ее именно столько, сколько есть, они могли бы с чистой совестью заявить, что разгадали фундаментальную загадку Вселенной: происхождение той энергии в пустом пространстве, которая неуклонно провоцирует космос на дальнейшее и все более стремительное расширение — вперед в будущее, в котором нас ждет поистине необъятное космическое пространство, не менее гигантские запасы темной энергии в нем и почти никакого вещества на один кубический световой год.
Откуда берется и что представляет собой темная энергия? Нащупать ответ космологи могут в глубинных пластах своих знаний о физике частиц: темная энергия — это продукт каких-то событий, происходящих в пустом пространстве (если не терять надежды на то, что квантовая теория достоверно описывает суть вещества и энергии). Вся физика частиц основана на данной теории, состоятельность которой столь многократно и очень точно была подтверждена в микроскопических условиях, что почти все физики не видят повода сомневаться в ней. Неотъемлемая часть квантовой теории подразумевает, что так называемое пустое пространство на самом деле гудит и дрожит от «виртуальных частиц», которые появляются в нем и исчезают быстрее, чем мы успеваем их заметить, однако позволяют нам отследить эффект своего существования (темную энергию). Собственно, возникает она в результате этого постоянного мельтешения — появления и исчезновения — виртуальных частиц, которое мы называем квантовыми флуктуациями вакуума (это специально для тех, кому нравится звонкая терминология физиков, остальные могут использовать слово «колебания»). Далее исследователи частиц могут без особых трудностей вычислить точное количество энергии, заполняющей каждый кубический сантиметр вакуума. Непосредственное применение квантовой теории к так называемому вакууму напрямую предполагает, что такие квантовые колебания должны производить темную энергию. Со стороны эта история звучит весьма непринужденно, и возникает резонный вопрос: почему же космологам понадобилось так много времени на то, чтобы обнаружить существование этой энергии?