UNIX: разработка сетевых приложений - Уильям Стивенс
Шрифт:
Интервал:
Закладка:
Некоторые системы (например, Solaris) определяют константу PTHREAD_MUTEX_INITIALIZER как 0. Если данная инициализация будет опущена, это ни на что не повлияет, так как статически размещаемые переменные все равно автоматически инициализируются нулем. Но для других систем такой гарантии дать нельзя — например, в Digital Unix константа инициализации ненулевая.
В листинге 26.12 приведена исправленная версия листинга 26.11, в которой используется одно взаимное исключение для блокирования счетчика при работе с двумя потоками.
Листинг 26.12. Исправленная версия листинга 26.11, использующая взаимное исключение для защиты совместно используемой переменной
//threads/examplе01.с
1 #include "unpthread.h"
2 #define NLOOP 5000
3 int counter; /* увеличивается потоками */
4 pthread_mutex_t counter_mutex = PTHREAD_MUTEX_INITIALIZER;
5 void *doit(void*);
6 int
7 main(int argc, char **argv)
8 {
9 pthread_t tidA, tidB;
10 Pthread_create(&tidA, NULL, &doit, NULL);
11 Pthread_create(&tidB, NULL, &doit, NULL);
12 /* ожидание завершения обоих потоков */
13 Pthread_join(tidA, NULL);
14 Pthread_join(tidB, NULL);
15 exit(0);
16 }
17 void*
18 doit(void *vptr)
19 {
20 int i, val;
21 /*
22 * Каждый поток считывает, выводит и увеличивает счетчик NLOOP раз.
23 * Значение счетчика должно возрастать монотонно.
24 */
25 for (i = 0; i < NLOOP; i++) {
26 Pthread_mutex_lock(&counter_mutex);
27 val = counter;
28 printf(%d: %dn", pthread_self(), val + 1);
29 counter = val + 1;
30 Pthread_mutex_unlock(&counter_mutex);
31 }
32 return(NULL);
33 }
Мы объявляем взаимное исключение с именем counter_mutex. Это исключение должно быть заблокировано потоком на то время, когда он манипулирует переменной counter. Когда мы запускали эту программу, результат всегда был правильным: значение переменной увеличивалось монотонно, а ее окончательное значение всегда оказывалось равным 10 000.
Насколько серьезной является дополнительная нагрузка, связанная с использованием взаимных исключений? Мы изменили программы, приведенные в листингах 26.11 и 26.12, заменив значение NLOOP на 50 000 (вместо исходного значения 5000), и засекли время, направив вывод на устройство /dev/null. Время работы центрального процессора в случае корректной версии, использующей взаимное исключение, увеличилось относительно времени работы некорректной версии без взаимного исключения на 10 %. Это означает, что использование взаимного исключения не связано со значительными издержками.
26.8. Условные переменные
Взаимное исключение позволяет предотвратить одновременный доступ к совместно используемой (разделяемой) переменной, но для того чтобы перевести поток в состояние ожидания (спящее состояние) до момента выполнения некоторого условия, необходим другой механизм. Продемонстрируем сказанное на следующем примере. Вернемся к нашему веб-клиенту из раздела 26.6 и заменим функцию Solaris thr_join на pthread_join. Но мы не можем вызвать функцию pthread_join до тех пор, пока не будем знать, что выполнение потока завершилось. Сначала мы объявляем глобальную переменную, которая служит счетчиком количества завершившихся потоков, и организуем управление доступом к ней с помощью взаимного исключения.
int ndone; /* количество потоков, завершивших выполнение */
pthread_mutex_t ndone_mutex = PTHREAD_MUTEX_INITIALIZER;
Затем мы требуем, чтобы каждый поток по завершении своего выполнения увеличивал этот счетчик на единицу, используя соответствующее взаимное исключение.
void* do_get_read(void *vptr) {
...
Pthread_mutex_lock(&ndone_mutex);
ndone++;
Pthread_mutex_unlock(&ndone_mutex);
return(fptr); /* завершение выполнения потока */
}
Но каким при этом получается основной цикл? Взаимное исключение должно быть постоянно блокировано основным циклом, который проверяет, какие потоки завершили свое выполнение.
while (nlefttoread > 0) {
while (nconn < maxnconn && nlefttoconn > 0) {
/* находим файл для чтения */
...
}
/* Проверяем, не завершен ли поток */
Pthread_mutex_lock(&ndone_mutex);
if (ndone > 0) {
for (i =0; i < nfiles; i++) {
if (file[i].f_flags & F_DONE) {
Pthread_join(file[i].f_tid, (void**)&fptr);
/* обновляем file[i] для завершенного потока */
...
}
}
}
Pthread_mutex_unlock(&ndone_mutex);
}
Это означает, что главный поток никогда не переходит в спящее состояние, а просто входит в цикл, проверяя каждый раз значение переменной ndone. Этот процесс называется опросом (polling) и рассматривается как пустая трата времени центрального процессора.
Нам нужен метод, с помощью которого главный цикл мог бы входить в состояние ожидания, пока один из потоков не оповестит его о том, что какая-либо задача выполнена. Эта возможность обеспечивается использованием условной переменной (conditional variable) вместе со взаимным исключением. Взаимное исключение используется для реализации блокирования, а условная переменная обеспечивает сигнальный механизм.
В терминах Pthreads условная переменная — это переменная типа pthread_cond_t. Такие переменные используются в следующих двух функциях:
#include <pthread.h>
int pthread_cond_wait(pthread_cond_t *cptr, pthread_mutex_t *mptr);
int pthread_cond_signal(pthread_cond_t *cptr);
Обе функции возвращают: 0 в случае успешного выполнения, положительное значение Exxx в случае ошибки
Слово signal в названии второй функции не имеет отношения к сигналам Unix SIGxxx.
Проще всего объяснить действие этих функций на примере. Вернемся к нашему примеру веб-клиента. Счетчик ndone теперь ассоциируется и с условной переменной, и с взаимным исключением:
int ndone;
pthread_mutex_t ndone_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t ndone_cond = PTHREAD_COND_INITIALIZER;
Поток оповещает главный цикл о своем завершении, увеличивая значение счетчика, пока взаимное исключение принадлежит данному потоку (блокировано им), и используя условную переменную для сигнализации.
Pthread_mutex_lock(&ndone_mutex);
ndone++;
Pthread_cond_signal(&ndone_cond);
Pthread_mutex_unlock(&ndone_mutex);
Затем основной цикл блокируется в вызове функции pthread_cond_wait, ожидая оповещения о завершении выполнения потока:
while (nlefttoread > 0) {
while (nconn < maxnconn && nlefttoconn > 0) {
/* находим файл для чтения */
...
}
/* Ждем завершения выполнения какого-либо потока */
Pthread_mutex_lock(&ndone_mutex);
while (ndone == 0)
Pthread_cond_wait(&ndone_cond, &ndone_mutex);
for (i = 0; i < nfiles; i++) {
if (file[i].f_flags & F_DONE) {
Pthread_join(file[i].f_tid, (void**)&fptr);
/* обновляем file[i] для завершенного потока */
...
}
}
Pthread_mutex_unlock(&ndone_mutex);
}
Обратите внимание на то, что переменная ndone по-прежнему проверяется, только если потоку принадлежит взаимное исключение. Тогда, если не требуется выполнять какое-либо действие, вызывается функция pthread_cond_wait. Таким образом, вызывающий поток переходит в состояние ожидания, и разблокируется взаимное исключение, которое принадлежало этому потоку. Кроме того, когда управление возвращается потоку функцией pthread_cond_wait (после того как поступил сигнал от какого-либо другого потока), он снова блокирует взаимное исключение.
Почему взаимное исключение всегда связано с условной переменной? «Условие» обычно представляет собой значение некоторой переменной, используемой совместно несколькими потоками. Взаимное исключение требуется для того, чтобы различные потоки могли задавать и проверять значение условной переменной. Например, если в примере кода, приведенном ранее, отсутствовало бы взаимное исключение, то проверка в главном цикле выглядела бы следующим образом:
/* Ждем завершения выполнения одного или нескольких потоков */
while (ndone == 0)
Pthread_cond_wait(&ndone_cond, &ndone_mutex);
Но при этом существует вероятность, что последний поток увеличивает значение переменной ndone после проверки главным потоком условия ndone == 0, но перед вызовом функции pthread_cond_wait. Если это происходит, то последний «сигнал» теряется, и основной цикл оказывается заблокированным навсегда, так как он будет ждать события, которое никогда не произойдет.