Большая Советская Энциклопедия (РТ) - БСЭ БСЭ
Шрифт:
Интервал:
Закладка:
Лит. Сауков А. А. Геохимия ртути, М., 1946; Вопросы металлогении ртути, М., 1968; Мельников С. М., Металлургия ртути, М., 1971; Сауков А. А., Айдинян Н. Х., Озерова Н. А., Очерки геохимии ртути, М., 1972; Металлогения ртути, М., 1975.
В. П. Федорчук.
Ртутный вентиль
Рту'тный ве'нтиль, обобщённое название ионных приборов самостоятельного дугового разряда, с жидким ртутным катодом. Р. в. используют главным образом в качестве вентилей электрических в мощных промышленных выпрямительных и инверторных установках (см. Выпрямитель тока, Инвертор) или в качестве управляемых разрядников в импульсных устройствах. Р. в. состоит из герметичной (обычно металлической) оболочки и находящихся внутри неё ртутного катода, основного (графитового или стального) анода и дополнительных электродов, таких как управляющая сетка, деионизационный фильтр, анод возбуждения, зажигатель. Давление остаточного газа внутри оболочки Р. в. составляет 10-2—10-3 н/м2. Источником электронов в нём служит небольшая часть поверхности катода —
так называемое катодное пятно. В ту часть периода переменного напряжения, когда Р. в. обладает высокой проводимостью, между катодом и основным анодом горит самостоятельный дуговой разряд в ртутных парах, образующихся в результате испарения ртути катода. По методу управления моментом зажигания дугового разряда Р. в. делят на игнитроны и экситроны, по величине рабочего напряжения на основном аноде — на низковольтные (как правило, до 5—10 кв) и высоковольтные (обычно свыше 50 кв).
Лит.: Каганов И. Л., Ионные приборы, М., 1972.
Л. Ю. Абрамович.
Ртутный горизонт
Рту'тный горизо'нт, прибор, состоящий из сосуда с ртутью, горизонтальная поверхность которой используется в качестве зеркала при некоторых астрономических и геодезических наблюдениях. См. Искусственный горизонт.
Ртуть
Рту'ть (лат. Hydrargyrum), Hg, химический элемент II группы периодической системы Менделеева, атомный номер 80, атомная масса 200,59; серебристо-белый тяжёлый металл, жидкий при комнатной температуре. В природе Р. представлена семью стабильными изотопами с массовыми числами: 196 (0,2%), 198 (10,0%), 199 (16,8%), 200 (23,1%), 201 (13,2%), 202 (29,8%), 204 (6,9%).
Историческая справка. Самородная Р. была известна за 2000 лет до н. э. народам Древней Индии и Древнего Китая. Ими же, а также греками и римлянами применялась киноварь (природная HgS) как краска, лекарственное и косметическое средство. Греческий врач Диоскорид (1 в. н. э.), нагревая киноварь в железном сосуде с крышкой, получил Р. в виде паров, которые конденсировались на холодной внутренней поверхности крышки. Продукт реакции был назван hydrárgyros (от греч. hýdor — вода и árgyros — серебро), т. е. жидким серебром, откуда произошли латинские названия hydrargyrum, а также argentum vivum — живое серебро. Последнее сохранилось в названиях P. quicksilver (англ.) и Quecksilber (нем.). Происхождение русского названия Р. не установлено. Алхимики считали Р. главной составной частью всех металлов. «Фиксация» Р. (переход в твёрдое состояние) признавалась первым условием её превращения в золото. Твёрдую Р. впервые получили в декабре 1759 петербургские академик И. А. Браун и М. В. Ломоносов. Учёным удалось заморозить Р. в смеси из снега и концентрированной азотной кислоты. В опытах Ломоносова отвердевшая Р. оказалась ковкой, как свинец. Известие о «фиксации» Р. произвело сенсацию в учёном мире того времени; оно явилось одним из наиболее убедительных доказательств того, что Р. — такой же металл, как и все прочие.
Распространение Р. в природе. Р. принадлежит к числу весьма редких элементов, её среднее содержание в земной коре (кларк) близко к 4,5×10-6% по массе. Приблизительно в таких количествах она содержится в изверженных горных породах. Важную роль в геохимии Р. играет её миграция в газообразном состоянии и в водных растворах. В земной коре Р. преимущественно рассеяна; осаждается из горячих подземных вод, образуя ртутные руды (содержание Р. в них составляет несколько процентов). Известно 35 ртутных минералов; главнейший из них — киноварь HgS.
В биосфере Р. в основном рассеивается и лишь в незначительных количествах сорбируется глинами и илами (в глинах и сланцах в среднем 4×10-5%). В морской воде содержится 3×10-9% Р.
Самородная Р., встречающаяся в природе, образуется при окислении киновари в сульфат и разложении последнего, при вулканических извержениях (редко), гидротермальным путём (выделяется из водных растворов).
Физические и химические свойства Р. — единственный металл, жидкий при комнатной температуре. Твёрдая Р. кристаллизуется в ромбические сингонии, а = 3,463 , с = 6,706 ; плотность твёрдой Р. 14,193 г/см3 (—38,9 °С), жидкой 13,52 г/см3 (20 °С), атомный радиус 1,57 , ионный радиус Hg2+ 1,10 ; tпл — 38,89 °С; tkип 357,25 °С; удельная теплоемкость при 0 °С 0,139 кдж/(кг ×К) [0,03336 кал/(г×°С)]; при 200 °С 0,133 кдж/(кг×К)[0,0319 кал/(г ×°С)]; температурный коэффициент линейного расширения 1,826×10-4 (0—100 °С); теплопроводность 8,247вт/(м×К) [0,0197 кал/(см×сек×°C) (при 20°C); удельное электросопротивление при 0°С 94,07×10-8 ом×м (94,07×10-6 ом×см). При 4,155 К Р. становится сверхпроводником (см. Сверхпроводимость). Р. диамагнитна, её атомная магнитная восприимчивость равна —0,19×10-6 (при 18 °С).
Конфигурация внешних электронов атома Hg 5d 106s2, в соответствии с чем при химических реакциях образуются катионы Hg2+ и Hg22+. Химическая активность Р. невелика. В сухом воздухе (или кислороде) она при комнатной температуре сохраняет свой блеск неограниченно долго. С кислородом даёт 2 соединения: чёрную закись Hg2O и красную окись HgO. Hg2O появляется в виде чёрной плёнки на поверхности Р. при действии озона. HgO образуется при нагревании Hg на воздухе (300—350 °С), а также при осторожном нагревании нитратов Hg (NO3)2 или Hg2(NO3)2. Гидроокись Р. практически не образуется. При взаимодействии с металлами, которые Р. смачивает, образуются амальгамы. Из сернистых соединений важнейшим является HgS, которую получают растиранием Hg с серным цветом при комнатной температуре, а также осаждением растворов солей Hg2+ сероводородом или сульфидом щелочного металла. С галогенами (хлором, иодом) Р. соединяется при нагревании, образуя почти недиссоциирующие, в большинстве ядовитые соединения типа HgX2. В соляной и разбавленной серной кислотах Р. не растворяется но растворима в царской водке, азотной и горячей концентрированной серной кислотах.
Почти все соли Hg2+ плохо растворимы в воде. К хорошо растворимым относится нитрат Hg (NO3)2.
Большое значение имеют хлориды Р.: Hg2Cl2 (каломель) и HgCl2 (сулема) Известны соли окисной Р. цианистой и роданистой кислот, а также ртутная соль гремучей кислоты Hg (ONC)2, т. н. гремучая ртуть. При действии аммиака на соли образуются многочисленные комплексные соединения, например HgCI×2NH3 (плавкий белый преципитат) и HgNH2CI (неплавкий белый преципитат). Применение находят ртутьорганические соединения.
Получение Р. Ртутные руды (или рудные концентраты), содержащие Р. в виде киновари, подвергают окислительному обжигу
HgS + O2 = Hg + SO2.
Обжиговые газы, пройдя пылеуловительную камеру, поступают в трубчатый холодильник из нержавеющей стали или монель-металла. Жидкая Р. стекает в железные приёмники. Для очистки сырую Р. пропускают тонкой струйкой через высокий (1—1,5м) сосуд с 10%-ной HNO3, промывают водой, высушивают и перегоняют в вакууме.
Возможно также гидрометаллургическое извлечение Р. из руд и концентратов растворением HgS в сернистом натрии с последующим вытеснением Р. алюминием. Разработаны способы извлечения Р. электролизом сульфидных растворов.
Применение. Р. широко применяется при изготовлении научных приборов (барометры, термометры, манометры, вакуумные насосы, нормальные элементы, полярографы, капиллярные электрометры и др.), в ртутных лампах, переключателях, выпрямителях; как жидкий катод в производстве едких щелочей и хлора электролизом, в качестве катализатора при синтезе уксусной кислоты, в металлургии для амальгамации золота и серебра, при изготовлении взрывчатых веществ (см. Гремучая ртуть); в медицине (каломель, сулема, ртутьорганические и другие соединения), в качестве пигмента (киноварь), в сельском хозяйстве (органические соединения Р.) в качестве протравителя семян и гербицида, а также как компонент краски морских судов (для борьбы с обрастанием их организмами). Р. и ее соединения токсичны, поэтому работа с ними требует принятия необходимых мер предосторожности.