Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Образовательная литература » Тесты и их решения по финансовой математике - М. Сихов

Тесты и их решения по финансовой математике - М. Сихов

Читать онлайн Тесты и их решения по финансовой математике - М. Сихов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3
Перейти на страницу:

Теперь предполагая, что платеж 9800 будет произведен Жанной в момент времени t и приравнивая текущие стоимости пожертвований на 1 января 1998 года имеем

.

т. е. получим диаграмму

Решая это уравнение относительно ежемесячного периода t, находим

Итак, платеж 9800 будет произведен Жанной через 12.1 месяцев, начиная с 1 января 1998 года, т.е. в январе 1999 года.

Решение на калкуляторе.

1-шаг (расчет ): 2nd ICONV; 2nd CLR WORK; (NOM=) 24 ENTER; ↑(C/Y=) 12 ENTER; ↑(EFF=) CPT: EFF = 26.824;

2-шаг (расчет ): 2nd RESET ENTER; 2nd P/Y 1 ENTER; 2nd BGN 2nd SET;2nd QUIT;

3 N; 26.824 I/Y; 3200 PMT; 0 FV; CPT PV: PV= -7712.69;

3-шаг (расчет t): 2 I/Y; 0 PMT; 9800 FV; CPT N: N=12.1.

Решение на компьютере.

1-шаг ( ): ЭФФЕКТ(Номинальная ставка=24 %; Кол_пер=12)= 26.824 %;

2-шаг (расчет ): ПС(Ставка=26.824 %; Кпер=3; ПЛТ=3200; Бс= 0; Тип=1)= -7712.69;

3-шаг (расчет t): КПЕР(Ставка=2; ПЛТ =0; Пс=-7712,69; Бс= 9800; Тип=1)= 12.10.

Вопрос 9

В конце каждого года в период с 1996 года по 2000 год включительно Джон платит Генри 600. Он также платит Генри 400 в конце каждого года в период с 1998 года по 2001 год включительно. Предположив, что , найдите стоимость этих выплат на 1 января 1995 года.

A. Меньше 1 600

B. 1 600, но меньше 1 800

C. 1 800, но меньше 2 000

D. 2000, но меньше 2 200

E. 2 200 или больше

Решение.

Текущая стоимость этих выплат на 1 января 1995 года будет равна

Решение на калкуляторе.

Заметим, что рассматривая финансовый поток

и пользуясь функцией расчета «CF» можно посчитать текущую стоимость данного финансового потока

1-шаг (расчет PV): 2nd RESET ENTER;

CF; CF0= 0;

↓; 1 ENTER: C01 = 0;

↓; 1 ENTER: F01 = 1;

↓; 600 ENTER: C02 = 600;

↓; 2 ENTER: F02 = 2;

↓; 1000 ENTER: C03 = 1000;

↓; 3 ENTER: F03 = 3;

↓; 400 ENTER: C04 = 400;

↓; 1 ENTER: F04 = 1;

NPV; 20 ENTER: I = 20;

↓; CPT: NPV=2094.55

Решение на компьютере.

1-шаг (расчет i): ЧПС(20 %; 0; 600; 600; 1000; 1000; 1000; 400)= 2094.55.

Вопрос 10

Человек занял 10 000 и может выбрать между двумя схемами погашения А и B. Выплаты в конце года.

Внутренняя ставка процента в схеме А превышает ставку в схеме В на:

A. Меньше (-4)%

B. (-4)%, но меньше (-2)%

C. (-2)%, но меньше 0%

D. 0 %, но меньше 2%

E. 2 % или больше

Решение.

Определяя текущие стоимости финансовых потоков для схем погашения А и B и приравнивая их сумме долга, соответственно, получим

Как видим, нам надо решать уравнения 6-й степени относительно . Решения таких уравнений мы здесь даем с помощью калькулятора и компьютера.

Решение на калькуляторе.

Пользуясь функцией расчета «Внутренняя ставка доходности (IRR)» для каждого финансового потока получим

1-шаг (расчет ): 2nd RESET ENTER; CF;

10000 +/– ENTER: CF0= -10000;

↓; 3500 ENTER: C01 = 3500;

↓; 1 ENTER: F01 = 1;

↓; 2500 ENTER: C02 = 2500;

↓; 1 ENTER: F02 = 1;

↓; 4000 ENTER: C03 = 4000;

↓; 1 ENTER: F03 = 1;

↓; 0 ENTER: C04 = 0;

↓; 1 ENTER: F04 = 1;

↓; 4000 ENTER: C05 = 4000;

↓; 2 ENTER: F05 = 2;

IRR; CPT: IRR= 19.65 %;

2-шаг (расчет ): 2nd RESET ENTER; CF;

10000 +/– ENTER: CF0= -10000;

↓; 4000 ENTER: C01 = 4000;

↓; 1 ENTER: F01 = 1;

↓; 3800 ENTER: C02 = 3800;

↓; 1 ENTER: F02 = 1;

↓; 3000 ENTER: C03 = 3000;

↓; 1 ENTER: F03 = 1;

↓; 2500 ENTER: C04 = 2500;

↓; 3 ENTER: F04 = 3;

IRR; CPT: IRR= 23.37 %;

3-шаг (расчет ): 19.65 % 23.37 %=-3.71 %.

Решение на компьютере.

1-шаг (расчет ): ВСД(-10000; 3500; 2500; 4000; 0; 4000; 4000)= 19.65 %;

2-шаг (расчет ): ВСД(-10000; 4000; 3800; 3000; 2500; 2500; 2500)= 23.37 %;

3-шаг (расчет ): 19.65 % 23.37 %=-3.71 %.

ТЕСТ 2

Уравнение стоимости. Взвешенная по величине и взвешенная по времени ставки доходности

Вопрос 1

В каком интервале находится взвешенная по времени ставка доходности за 1989 год ?

A. меньше 1%

B. 1 %, но меньше 2%

C. 2%, но меньше 3%

D. 3 %, но меньше 4%

E. 4 % или больше

Решение.

Здесь и далее количество 1000 единиц будем выделять с помощью запятых, т.е., например, 10000=10,0.

Напоминаем, что, если функция накоплений А(t), то ставка доходности в n-ом промежутке определяем следующим образом:

. (2.1)

Чтобы определить взвешенную по времени ставку инвестиционной доходности фонда в течение 1989 года, сначала надо определить ставки доходности для каждого промежутка, где известны начальная и конечная стоимости (балансы) фонда, непосредственно предшествующие депозиту или снятию денег. По условию задачи таких промежутков четыре.

Итак, в силу (2.1) ставка доходности с 1 января по 1 апреля 1989 г. определяется уравнением ,

т. к. сразу же после выплаты 31 марта 10000 стоимость портфеля 1 апреля составляет 215000.

С учетом полученного взноса 30 июня 75000 ставка доходности с 1 апреля по 1 июля составляет

Ставка доходности с 1 июля по 1 октября составляет

Наконец, ставка доходности с 1 октября по 31 декабря 1989 года равна

.

Взвешенная по времени доходность за год находится из факторов накопления, соответствующих каждому интервалу, как

(2.2)

т. е. =1,125*0.9349*1,0435*0.9375 – 1 = 2.89 %.

Вопрос 2

(а)=взвешенная по времени ставка инвестиционной доходности фонда в течение 1989 года;

(в)=взвешенная по величине годовая ставка инвестиционной доходности фонда в случае использования простых процентов;

(с)=ставка инвестиционной доходности фонда в случае использования простых процентов и равномерного распределения в течение года всех депозитов и снятий денег.

A. (а)>(в)>(c)

B. (а)>(c)>(в)

С. (с)>(а)>(в)

D. (с)>(в)>(а)

Е. ни один из указанных вариантов

Решение.

Пользуясь (2.1), определим ставки доходности для каждого из 3-х промежутков, соответственно

=1.15,

,

,

Следовательно, в силу (2.2) взвешенная по времени доходность за год будет равна

(в) Выведя уравнение стоимости путем сложения всех величин на момент 31 декабря 1989 года, рассчитаем взвешенную по величине доходность фонда в случае использования простых процентов, рассматривая только депозиты и снятия денег и не принимая во внимание промежуточные балансы

.

Поскольку это уравнение является линейным по i, то легко получить результат

100+100,

111.25 .

(с) Для определения ставку инвестиционной доходности фонда в случае использования простых процентов и равномерного распределения в течение года всех депозитов и снятий денег, предположим, что все депозиты и снятий денег будут происходит в середине года. Тогда выведя уравнение стоимости путем сложения всех величин на момент 31 декабря 1989 года, имеем

100000(1+

100+100,

94.5

т. е.

Сравнивая полученные ставки доходности, получим ответ: (с)>(в)>(а).

Вопрос 3

В каком интервале находится взвешенная по времени ставка доходности за 1989 год ?

A. меньше 6.90%

B. 6.90 %, но меньше 7.30%

C. 7.30 %, но меньше 7.70%

D. 7.70 %, но меньше 8.10%

E. 8.10 % или больше

Решение.

Пользуясь (2.1), определим ставки доходности для каждого из 4-х промежутков, соответственно

=1.067,

,

,

.

Следовательно, взвешенная по времени доходность за год находится из факторов накопления, соответствующих каждому интервалу, как

т. е. i=8.2 %.

Вопрос 4

Рассмотрим следующие данные:

Разовый депозит в фонд: 1000 внесено 1/1/92. Снятия денег из фонда не было.

Процентная ставка в 1992-1993 г.г.: 7 % в год, начисляемых ежемесячно.

Ставка дисконта в 1994-1997 г.г.: 5 % в год , начисляемых ежеквартально.

Интенсивность процента в течение 1998-2002 г.г.: 3 % в год.

Выборочное значение: e =2.71828.

В каком интервале находится величина фонда на 1/1/2003?

A. Меньше 1500

B. 1500, но меньше 1600

C. 1600, но меньше 1700

D. 1700, но меньше 1800

1 2 3
Перейти на страницу:
Тут вы можете бесплатно читать книгу Тесты и их решения по финансовой математике - М. Сихов.
Комментарии