Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Науки о космосе » Обитаемые космические станции - Бубнов Игорь

Обитаемые космические станции - Бубнов Игорь

Читать онлайн Обитаемые космические станции - Бубнов Игорь

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 39
Перейти на страницу:

На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию обычной конвекцией. Это означает, что различные элементы оборудования аппаратуры ОКС не смогут охлаждаться так, как это делается обычно на самолете, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является радиационное излучение. Известно, что полет с большой скоростью в нижних слоях атмосферы связан с очень сильным конвективным нагревом носовой части и обшивки летательного аппарата, возникающим в результате трения о молекулы воздуха. При полете же на высотах 130–160 км нагрев обшивки от трения о воздух становится ничтожно малым.

Итак, где же, начинается собственно космос — свободное межпланетное пространство в «чистом» виде?

Едва ли на этот вопрос можно ответить вполне определенно. На схеме рис. 22 показаны все три рассмотренные нами классификации зон околоземного пространства — физическая, физиологическая и техническая. Интересно, что при подъеме на высоту особенно быстро начинается космос для физиологов — с высоты 19 и даже 15 км. Правда, на этих высотах проявляются лишь отдельные свойства космической среды. Поэтому зону от 19 до 200 км физиологи считают частично эквивалентной космосу.

Конечно, и выше 200 км космос все же отличается от межпланетного пространства, так как еще сказывается влияние близости Земли. Радиационные пояса Земли распространяются на многие десятки тысяч, а гравитационные и магнитные поля — на многие сотни тысяч километров.

Рис. 22. Классификация зон околоземного пространства

Радиация. Пожалуй, одной из самых больших опасностей, подстерегающих человека в космосе, является воздействие космической радиации. Еще не ясны до конца размеры этой опасности, но уже очевидна: необходимость в мощной антирадиационной защите для экипажа ОКС, тем более что вредное влияние радиации на организм обладает свойством накапливаемости и может проявиться через несколько лет или передаться по наследству.

С биологическим действием ионизирующей радиации: люди впервые столкнулись более полувека назад после открытия естественной радиоактивности. Однако серьезным изучением влияния радиации на живые организмы ученые занялись лишь в недавнее время в связи с бурным развитием атомной техники.

Предельно допустимая доза облучения для человека не должна превышать 0,3 рентгена в неделю или 15 рентген в год. Предельной для человека дозой при кратковременном облучении считают 600 рентген. В связи с необходимостью длительного пребывания человека на борту ОКС или в далеком космосе ученые ищут эффективные средства защиты от ионизирующей радиации. Такой защитой, возможно, будут специальные экраны — поглотители и отражатели космических частиц. Ученые ведут также усиленные поиски специальных препаратов, способных в случаях сильного облучения предотвратить или хотя бы задержать развитие лучевой болезни.

При проектировании ОКС будет учитываться влияние космической радиации не только на организм человека, но и на материалы конструкции и оборудование. Исследования показали, что радиация почти не действует на металлы, но в условиях вакуума способна вызывать деполимеризацию пластмасс, нарушающую их структуру. Процесс деполимеризации сопровождается обычно выделением газа, обесцвечиванием, повышением хрупкости и электропроводности, уменьшением сцепляемости частиц пластических материалов.

Известную опасность радиация представляет и для полупроводниковых приборов — транзисторов.

Мы уже упоминали об околоземных поясах радиации, образованных магнитным полем Земли (см. рис. 6). Это главный источник опасных излучений для экипажа ОКС. Радиационная «оболочка» Земли состоит из трех зон, или поясов — внутреннего, внешнего и самого внешнего.

Первый — внутренний пояс радиации — как бы охватывает земной шар вдоль геомагнитного экватора. Он состоит из частиц с высокой энергией — протонов. Относительно центра Земли этот пояс, как и порождающее его магнитное поле, расположен несимметрично: в западном полушарии нижний край его опускается до высоты 600 км, в восточном — поднимается до 1600 км. В некоторых местах (например, в южной части Атлантического океана) повышенная радиация начинается на еще меньших высотах — 350–400 км, что объясняется влиянием местных магнитных аномалий. По широте внутренний пояс распространяется примерно на 20° к северу и на 20° к югу от экватора. Интенсивность потока заряженных частиц в нем переменна по высоте: с подъемом на каждые 100 км она удваивается и достигает максимального значения на высоте 3000 км. Ионизирующее действие радиации внутреннего пояса вызывают главным образом протоны, которые могут создавать максимальную дозу, равную 50-100 рентгенов в час. Создать надежную защиту при такой дозе радиации можно, лишь применяя очень толстые экраны, вес каждого погонного сантиметра которых, по оценке американских специалистов, на современном уровне техники может составлять до 80 г.

Второй — внешний пояс радиации, — открытый советскими учеными, расположен на высотах от 9000 до 45000 км. Он намного шире внутреннего (распространяется на 50° к северу и на 50° к югу от экватора) и также обладает переменной интенсивностью. Максимальная доза, создаваемая внешним поясом за один час, может составить громадную величину — до 10000 рентген. Однако проблема защиты от радиации внешнего пояса будет, по всей вероятности, менее сложной, чем проблема защиты от радиации внутреннего пояса. Дело в том, что внешний пояс состоит в основном из частиц сравнительно невысокой энергии — электронов, от которых могут неплохо защитить даже обычные материалы обшивки космического корабля. Если же применить довольно тонкие свинцовые экраны, то эту дозу можно снизить в тысячи и десятки тысяч раз.

Что касается третьего — самого внешнего пояса радиации, — расположенного на высотах 45000-80000 км, то, несмотря на его пока еще недостаточную изученность, полагают, что радиация в нем не будет представлять большой опасности из-за малой энергии его частиц.

Интенсивность космической радиации резко возрастает под влиянием солнечных вспышек, которые, что особенно важно, довольно нерегулярны по времени и интенсивности. Например, за период с 1956 по 1960 г. было отмечено около десятка мощных вспышек на Солнце с частотой появления около двух в год. Вспышка, наблюдавшаяся 12 мая 1959 г., сопровождалась излучением протонов, которые на высоте 30 км создавали биологическую дозу в 2 рентгена в час; причем надо учитывать, что на этой высоте сильно сказывается экранирующее влияние атмосферы. Как видим, уже этот уровень дозы чрезмерно велик для человека, однако солнечные вспышки могут создавать и более интенсивные потоки радиации. Зарегистрированная в июле того же года при очередной вспышке на Солнце интенсивность потока протонов оказалась в десять раз больше предшествующей.

Обеспечение надежной защиты экипажа космического аппарата от действия радиации солнечных вспышек — весьма сложная задача. Достаточно сказать, что для защиты от средней по интенсивности вспышки 12 мая 1959 г. потребовался бы толстый графитовый экран, вес которого при площади 10 м2 составил бы 5 т. Теперь понятно, почему большое значение приобретает прогнозирование вспышек на Солнце. Многолетними наблюдениями за Солнцем установлено, что в его деятельности имеются периоды минимальной активности, Эти периоды наиболее благоприятны для полетов человека в космос и пребывания людей на борту орбитальных станций. Предполагается, что очередные периоды минимальной солнечной активности будут наблюдаться в 1963–1966 и 1972–1975 гг.

Итак, наибольшую опасность для экипажа ОКС представят интенсивные потоки протонов при вспышках на Солнце и при прохождении станцией внутреннего пояса радиации, где мощность дозы может достигать 1 рентгена в минуту и более. Как мы уже говорили, именно протоны являются теми частицами, от которых в первую очередь необходимо защищаться. Однако при разработке системы радиационной защиты ОКС нужно учитывать и то, что, попадая в материал обшивки и конструкции, протоны способны создавать вторичные продукты радиации, в частности гамма-лучи и рентгеновские лучи, обладающие еще большей проникающей способностью, чем протоны.

1 ... 18 19 20 21 22 23 24 25 26 ... 39
Перейти на страницу:
Тут вы можете бесплатно читать книгу Обитаемые космические станции - Бубнов Игорь.
Комментарии