Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Вселенная. Руководство по эксплуатации - Дэйв Голдберг

Вселенная. Руководство по эксплуатации - Дэйв Голдберг

Читать онлайн Вселенная. Руководство по эксплуатации - Дэйв Голдберг

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 18 19 20 21 22 23 24 25 26 ... 62
Перейти на страницу:

Слабое взаимодействие очень похоже на бросание тяжелого гимнастического мяча. Летит он очень недалеко, бьет несильно и за типичное время успевает неимоверно надоесть. Вообще-то нам уже намекнули, почему это так скучно. Гимнастический мяч очень тяжелый, и даже атлеты-силачи легендарных времен не могли бросить его достаточно далеко.

В слабое взаимодействие играют кварки, нейтрино и электроны. Поскольку, как мы уже сказали, их очень много и все лезут поучаствовать, игра идет очень медленно, и ничего особенно интересного не происходит.

IV. Откуда же берутся эти силы?

Наш разговор мы начали с того, что фундаментальные силы похожи на игры, однако в нашей игре не хватает одного компонента, без которого ничего не получится: это мяч. Задумайтесь об этом. Без мяча теннис — не более чем конвульсивное размахивание ракеткой. То же самое можно сказать и о физике частиц. По состоянию наших знаний на сегодня, если положить два электрона на стол, они так и будут лежать. Взаимодействуют они только через электромагнитное (или слабое, или гравитационное) поле. Так что без поля они друг друга не увидят.

— Откуда же берется поле? Две частицы должны как-то известить друг друга о своем присутствии. Это можно сделать, «послав» от одной к другой третью частицу. Этот посланец — или переносчик взаимодействия — и есть частица, которая на самом деле несет в себе силу. Два электрона посылают туда-сюда векую частицу с сообщением: «Вот он я, вали отсюда!»[69]

Частица-переносчик в электромагнетизме называется фотоном, и мы уже уделили беседе о нем довольно много времени в главе 2. Мы уже знаем, что фотоны лишены массы и двигаются со скоростью света. Вследствие наводняющей Вселенную энергии вакуума все мы по уши в фотонах, которые то появляются, то исчезают.

Как мы видели, в зависимости от обстоятельств свет можно считать частицей или волной. В более общем смысле волна — это такое поле, что-то такое, что наблюдается везде во времени и пространстве. Если вы возьмете антенну и обойдете с ней весь дом, то везде засечете радиосигналы: где-то слабее, где-то сильнее. Это и есть электромагнитное поле. Фотон — это всего лишь кусочек электромагнитного поля, который летит через пространство со скоростью света. То же самое можно сказать обо всех фундаментальных силах. Существует сильное поле, слабое поле, гравитационное поле, и у каждого есть своя соответствующая частица.

Переносчики сильного ядерного взаимодействия называются глюонами. Глюоны, как и фотоны, лишены массы и двигаются со скоростью света, однако, в отличие от фотонов, подвержены тревожным состояниям, связанным с сепарацией. Фотон — носитель электромагнитной силы, но сам по себе он электрически нейтрален. То есть сам он и не чувствует электромагнитной силы.

Частицы, которые испытывают на себе сильное взаимодействие, обладают зарядом иного рода — «цветом». «Сильные» аналоги отрицательного и положительного зарядов в мире электромагнетизма — это красный, синий и зеленый заряды, которые определяют взаимодействия, возникающие между кварками в сильном поле. Если вы собрались бежать за цветными карандашами, чтобы рисовать Сильные взаимодействия, повремените. Это просто очередные придурковатые жаргонные названия, которые физики придумали, чтобы сбить с толку непосвященных.

Однако между электромагнитным режимом и сильным режимом существует важное различие. Как и при электромагнетизме, «игроки» (кварки) обладают зарядом, однако, в отличие от электромагнетизма, мячик тоже заряжен. Глюоны не просто переносят сильное взаимодействие, они его чувствуют, что разительным образом отличает их от фотонов. Глюоны притягивают друг друга и запутываются в структуры, которые называются глюболами. Это значит, что глюоны не могут летать далеко и сразу попадаются в ловушку — это одна из главных причин, по которой сильное взаимодействие ограничено пределами ядра. Это вдвойне справедливо для кварков, которые дадут сто очков вперед отшельникам вроде Дж.-Д. Сэлинджера и Томаса Пинчона. Вне ядра они вообще не встречаются.

Наша теория гравитации, которая называется общей теорией относительности, вообще не требует частиц-переносчиков. Об общей теории относительности мы поговорим в главах 6 и 7, но тот факт, что гравитация, согласно теории относительности, настолько отличается от всего остального, — это тайна, разгадку которой мы, вероятно, узнаем, когда будет разработана «Теория Всего» (по крайней мере убедительная Теория Всего).

Если все силы «на самом деле» одинаковы, тогда у всех должна быть частица-переносчик, не так ли? Идея заключается в том, что гравитацию переносит частица под названием гравитон, но ее не просто еще не открыли — мы крайне далеки от технологической возможности провести эксперимент, чувствительности которого хватило бы для обнаружения этой частицы. Однако мы уже знаем, что если гравитоны существуют, то они, как и фотоны, должны быть лишены массы. Вот почему они способны передавать гравитационные сигналы на такие громадные расстояния.

Слабое взаимодействие отличается от других очень сильно и доказывает это, как только может. Самое интересное его отличие заключается в том, что слабое взаимодействие переносят три частицы переносчика. В отличие от пижонских названий, которые получили другие частицы, эти называются просто — W-бозоны и Z-бозоны[70].

Почему же слабое взаимодействие настолько слабо, почему для того, чтобы хоть как-то проявиться, ему нужны дистанции субатомных размеров? Ответ мы уже знаем. Бозоны массивны, как гимнастические мячи, и им очень трудно перемещаться на дальние дистанции. Вероятно, вы не видите в этом ничего необычного, однако даже по самым простым теориям слабое взаимодействие, как и электромагнетизм и все прочие силы, должно иметь частицу-переносчик, лишенную массы. Почему же эти частицы совсем другие?

В физическом мире быть непохожим на других — сомнительное достоинство. Физики любят симметрию. Это настоящая любовь. Они посылают симметрии нежные записочки на лекциях и встречают ее после занятий с цветами. В целом физики понимают под симметрией вот что: можно менять параметры системы, но физика, которая стоит за ней, не меняется при этом ни капельки.

Представьте себе, что вы поехали за город поиграть в мини-гольф с племянником и племянницей и, в соответствии с традиционными гендерными представлениями, даете племяннику синий мяч, а племяннице — красный. Когда вы начинаете раунд, неважно, у кого синий мяч, а у кого красный, поскольку на игровые качества мяча цвет никак не влияет.

А теперь представьте себе, что на полпути к лунке вы отвлекли детей вкуснейшим мороженым и тайком поменяли местами синий и красный мячики. Если вы признаетесь детям, что поменяли мячики, ничего страшного не случится. Они вернутся к игре на том месте, где остановились, просто теперь племянник будет бить по красному мячу, а племянница — по синему. Конечно, подменить только один мячик и сделать так, чтобы на поле оказалось два красных, нельзя: тогда дети не будут знать, по какому мячику бить, и вы испортите им чудесный день.

Давайте обратимся к более научным материям, нежели мячики и клюшки. Дейтерий — это вариант водорода, ядро которого состоит из протона и нейтрона. Если бы вы попытались заменить один из нейтронов протоном или наоборот, у вас бы получился феномен вроде лох-несского чудовища или снежного человека: очень занятный, но несуществующий. Физики так ценят симметрию, поскольку с фундаментальной точки зрения любые два электрона — или любые две элементарные частицы одного и того же типа — в точности одинаковы, неразличимы. На микроскопическом уровне нельзя сказать «тот электрон» и «этот электрон». Мы просто отмечаем, что их два.

Так, но не совсем. У электронов есть еще одно свойство — спин, — как мы заметили, когда обсуждали в предыдущей главе ЭПР-парадокс. Спин электрона может быть направлен вверх или вниз. В чем разница? Во многих случаях разницы никакой. Например, электрон со спином, направленным вверх, имеет ту же массу и заряд, что и электрон, чей спин направлен вниз. С другой стороны, если мы пропустим электрон со спином, направленным вниз, через магнитное поле, он отразится не в том направлении, что электрон, чей спин направлен вверх. Более того, при помощи магнитного поля можно превратить электрон со спином, направленным вниз, в электрон со спином, направленным вверх, и наоборот. Тут-то в игру и вступает симметрия. Физики отмечают, что две частицы совершенно одинаковы, кроме одного относительно небольшого различия. Мы думаем о них как о двух версиях одной и той же частицы.

Разумеется, иногда эта аналогия оказывается довольно-таки натянутой. Например, при игре в мини-гольф можно всегда заменить красный мяч синим, и ничего ужасного не произойдет. На игровые качества мяча цвет, повторим, не влияет. Но что будет, если мы заменим красный мяч футбольным? С точки зрения игры в гольф такая подмена будет «плохой симметрией», поскольку один мяч влезает в лунку, а другой — нет. Однако если бы вы не играли в гольф, а хотели проверить, ровный ли у вас в гостиной пол, то мяч для гольфа и футбольный мяч послужили бы этой цели с одинаковым успехом.

1 ... 18 19 20 21 22 23 24 25 26 ... 62
Перейти на страницу:
Тут вы можете бесплатно читать книгу Вселенная. Руководство по эксплуатации - Дэйв Голдберг.
Комментарии