Эмбрионы, гены и эволюция - Рудольф Рэфф
Шрифт:
Интервал:
Закладка:
Таблица 3-1. Разнообразие событий, происходящих при эволюции генома
Событие Последствия структура ДНК структура белка фенотип В структурных генах Замена нуклеотида (непроявляющаяся) Изменение последовательности оснований Замены аминокислоты не происходит Никаких или незначительные Замена нуклеотида (консервативная) То же Замена аминокислоты на сходную То же Замена нуклеотида (проявляющаяся) То же Замена аминокислоты От никаких до утраты или изменения функции Делеция Утрата основания(й) Делеция аминокислоты (аминокислот), нонсенс-белок или преждевременный обрыв белковой цепи От незначительных до утраты функции Дупликация, за которой следует замена нуклеотидов в дупликатном гене Дупликация последовательности оснований; изменение последовательности в дупликатном гене Новая (сходная) аминокислотная последовательность Появление новой функции с сохранением прежней функции Слияние генов Утрата промежуточных оснований Объединение полипептидов Никаких, утрата функции или новая функция В некодирующих последовательностях Замена нуклеотидов в высокоповторяющихся последовательностях сателлитной ДНК Изменение последовательности оснований Никаких ? Замена нуклеотидов в спейсерных последовательностях между генами То же То же Никаких Замена нуклеотидов в некодирующих умеренно-повторяющихся последовательностях То же То же ? Замена нуклеотидов в некодирующих последовательностях без повторов То же Никаких ? Замена нуклеотидов в интронах То же От никаких до включения аминокислот От никаких до утраты или изменения функции Замена нуклеотидов в промоторах или других регуляторах То же Никаких Изменение уровня или сроков экспрессии Изменение частоты последовательности Изменение частоты сателлитной последовательности Изменение числа копий существующей последовательности Никаких ? Изменение частоты умеренно-повторяющейся последовательности То же То же ? Изменение плоидности Увеличение большинства или всех последовательностей в одинаковое число раз То же Никаких или увеличение размеров; изолирующий механизм Перемещение последовательностей в новые участки генома Включение интрона в структурный ген Новая локализация предсуществовавшей последовательности От никаких до включения аминокислот От никаких до изменения функции Транспозиция цис-регулятора То же Никаких Изменение уровня или сроков экспрессии Перемещение блоков сателлитной ДНК из одной хромосомы в другую То же То же ? Более крупные изменения Инверсии и транслокации То же Никаких Обычно никаких или незначительные; некоторое селективное преимущество в сохранении блоков генов Перенос генов от одного вида к другому Горизонтальный перенос генов между неродственными видами Введение новой последовательности Введение нового белка От никаких до введения новой функцииПервая группа событий охватывает большую часть классической молекулярной эволюции, т. е. модификации в кодирующих участках структурных генов. Такие события состоят в изменениях нуклеотидных последовательностей и во многих случаях приводят к изменению последовательности аминокислот в белке. Изменения белка могут варьировать от минимальных до довольно радикальных и (в экстремальных случаях) приводить к утрате функции или приобретению новых функций. Значительную долю нуклеотидных замен в структурных генах можно выявить только на уровне последовательности ДНК, потому что генетический код вырожденный и замена в кодоне третьего нуклеотида в большинстве случаев дает равноценный кодон, а следовательно, никакой замены аминокислоты не происходит. Некоторые замены консервативны: они приводят к замене одной аминокислоты на другую, с ней сходную. Например, замену одной гидрофобной аминокислоты - лейцина - другой гидрофобной аминокислотой - валином - можно выявить путем анализа аминокислотной последовательности в мутантном белке, однако на фенотипическом уровне она, вероятно, никак не проявится.
Эволюция структурных генов не ограничивается заменой нуклеотидов; в ней имеют место различные другие события, такие как делеции и слияния генов. Наиболее значительные изменения в эволюции новых белков состоят в дупликации какого-либо существующего гена, за которой следует дивергентная эволюция одной из дуплицировавшихся последовательностей с образованием близкого ей белка. Поскольку первоначальный ген при этом сохраняется, то в конечном итоге биохимические возможности организма возрастают благодаря добавлению нового белка; на фенотипическом уровне возникают аналогичные изменения, самые интересные из которых ведут к приобретению новых функций.
Наличие в геноме некодирующей ДНК - более загадочная проблема. Такие последовательности ДНК не кодируют белки, хотя в некоторых случаях они транскрибируются совместно со структурными генами. Эмпирически некодирующая ДНК делится на четыре группы. В первую группу входят некодирующие последовательности ДНК, роль которых мы понимаем лучше других - они служат спейсерами между структурными генами. Спейсеры, по-видимому, менее чувствительны к замене нуклеотидов, чем те структурные гены, которые ими разделяются. Вторая группа некодирующих последовательностей, открытая недавно и пока еще плохо изученная, - это внутригенные последовательности, получившие название интронов. Интроны - это последовательности ДНК, включенные в кодирующие участки структурных генов и нарушающие их непрерывность. Первичный транскрипт, получающийся при транскрибировании такого гена, содержит как кодирующие, так и интронные последовательности. Интронные последовательности удаляются при помощи специальных ферментов, осуществляющих процессинг РНК и превращающих первичные транскрипты в мРНК, содержащую непрерывную кодирующую последовательность. Интроны широко распространены у эукариот, у которых они содержатся как в ядерных генах, так и в генах органелл, но в генах прокариот они отсутствуют. Удивительно, что в некоторых случаях интронные последовательности значительно длиннее тех кодирующих последовательностей, которые они разрывают. Какими эффектами могут обладать мутации, возникающие в интронах, неизвестно, однако любые мутации, нарушающие правильное удаление интронных последовательностей из первичных транскриптов РНК, будут иметь серьезные последствия. К третьей группе некодирующих последовательностей относятся нетранскрибируемые регуляторные участки, такие как промоторы, к которым при инициации транскрипции прилежащего структурного гена должен присоединиться фермент РНК-полимераза, осуществляющая транскрипцию. Мутации, возникающие в этих участках, не вызывают изменений последовательности аминокислот в синтезируемых белках, но могут оказывать глубокое воздействие на степень экспрессии гена и на ее сроки. В последнюю, четвертую, группу входят последовательности, не имеющие известной функции. Мутации в этой ДНК приводят к изменениям последовательности нуклеотидов, но их фенотипические последствия неизвестны.