Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » Синергетика и прогнозы будущего - С. Капица

Синергетика и прогнозы будущего - С. Капица

Читать онлайн Синергетика и прогнозы будущего - С. Капица

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 22 23 24 25 26 27 28 29 30 ... 38
Перейти на страницу:

Однако, несмотря на большое значение этих принципиальных результатов, гораздо важнее было бы построение алгоритмов, позволяющих устанавливать взаимосвязи между этими параметрами. Например, нахождение связывающей их системы обыкновенных дифференциальных уравнений (инерциальной формы). Исследования в этом направлении интенсивно развиваются, и появились первые сообщения об обнадеживающих результатах.

Большие усилия в последние годы вкладывались в алгоритмы так называемой реконструкции аттракторов [18, 52]. Это новый класс методов обработки временных рядов, порождаемых детерминированными динамическими системами либо системами с малым шумом. Такие методы позволяют выяснить, насколько сложной должна быть модель изучаемого явления (сколько в ней должно быть степеней свободы или параметров порядка), насколько велик временной интервал, на котором можно прогнозировать поведение изучаемого объекта. Возможно, эти методы окажутся полезными при анализе социальных и исторических процессов. В ряде случаев они оказались очень эффективными в задачах медицинской и технической диагностики.

Изучение неустойчивых решений, определяющих будущее. Допустим, что важная часть проблемы решена, и параметры порядка выделены. Это не является столь уж невероятным, например, в макроэкономике эта задача иногда успешно решается. Кривые спроса и предложения, кривые производственных возможностей [15, 63, 64] связаны с разумным решением таких проблем на определенном уровне.

Допустим, что развита теория, показывающая, каким образом будут меняться эти величины в зависимости от времени (параметр t на рис.5). Говоря математическим языком, у нас появилась возможность построить бифуркационную диаграмму для исторических процессов, включая неустойчивые траектории.

Современная теория бифуркаций показывает, что эти "вещи в себе", которые также должны быть в центре внимания теоретической истории, подчас приобретают решающее значение. Неустойчивые и устойчивые ветви могут "схлопываться", "коллапсировать", что приводит к катастрофическим скачкам, к принципиальным изменениям в жизни общества, происходящим за очень короткий срок.

Перелистав страницы А.Дж.Тойнби или Л.Н.Гумилева, нетрудно найти много эпизодов не только из жизни полисов, где развитие шло в соответствии со сценарием, представленным на диаграмме (рис.2-5а). Диаграмма на рис.5б может соответствовать кризису "общества потребления", имеющего весьма высокие жизненные стандарты.

Однако, пожалуй, гораздо интереснее и важнее анализировать и предсказывать ситуации, представленные на рис.5в. Эта картина соответствует, например, разрушению окружающей среды при использовании традиционных технологий природопользования, резкому понижению жизненных стандартов и выходу с течением времени на уровень возобновляемых ресурсов. Две верхние изолированные ветви (устойчивая и неустойчивая) соответствуют, например, новой технологии природопользования. И здесь становится ясна большая польза диаграмм, подобных нарисованным. Допустим, что мы никоим образом не представляем кривой своего исторического развития. Тогда нас ожидают катастрофы, бедствия и серьезные неприятности в точках l3 и l4 (см. рис.5в).

Рис. 5. Типичные бифуркационные диаграммы, допускающие наглядную историческую интерпретацию.

Но, если мы имеем развитый и эффективный аппарат прогноза, то ситуация существенно меняется. Тут вполне уместна пословица "предупрежден, следовательно вооружен". Тут мы знаем "поворотный пункт" l*, где мобилизация ресурсов и усилий с целью перейти на верхнюю ветвь разумна и оправдана. Позже для этого попросту может не оказаться возможностей.

Здесь ситуация очень похожа на ту, которая сложилась у геофизиков, занимающихся прогнозом землетрясений: чем более обоснован и достоверен прогноз, тем более масштабные и энергичные меры можно предпринимать, чтобы уменьшить ущерб от стихийного бедствия [39].

Обратим внимание на попытку классификации и терминологию, введенную для бифуркаций в ходе исторического процесса [62]:<<Сами нестабильности могут быть различного происхождения. Они могут возникать вследствие недостаточной ассимиляции или плохого применения технологических инноваций. Такого рода нестабильности служат примерами того, что я называю "T-бифуркациями". Толчком к их возникновению могут быть и внешние факторы, такие как гонка вооружений, и внутренние факторы, такие как политические конфликты, образующие "C-бифуркации". Нестабильности могут быть вызваны крушением локального экономико-социального порядка под влиянием учащающихся кризисов, порождающих "E-бифуркации". Независимо от своего происхождения, нестабильности с высокой вероятностью распространяются на все секторы и сегменты общества и тем самым открывают двери быстрым и глубоким изменениям>>.

Изменение поля возможностей и эволюция областей притяжения аттракторов. Анализ развития системы высшего образования, в котором одному из авторов довелось принять участие [1, 2, 53], а также работа с моделями теории нейронных сетей, имитирующих элементы мышления [41, 54], помогла увидеть общую для многих задач нелинейной динамики проблему. Эта проблема может стать одной из ключевых при построении теоретической истории. Проблема связана с изменением областей притяжения аттракторов исследуемых систем.

В нелинейной динамике принципиальную роль играют притягивающие множества в фазовом пространстве. Формально они описывают поведение исследуемого объекта на больших временах. В теории нейронных сетей они соответствуют запомненным образам, которые следует распознать. В ряде междисциплинарных исследований аттракторам сопоставляются предельные состояния общества. Иногда их трактуют как "цели развития" [72, 73]. До середины восьмидесятых годов именно аттракторы и были в центре внимания специалистов по нелинейной динамике [18, 81].

Рис. 6. Метаморфоза области притяжения аттрактора A приводит к изменению "цели" исследуемой системы.

Однако сейчас акценты существенно меняются. На арену все чаще выходят множества в фазовом пространстве, называемые областями притяжения аттракторов. Пусть некоторое множество A (например, особая точка, как на рис.6) является аттрактором. Если начальная точка в фазовом пространстве, например, описывающая состояние общества, принадлежит его области притяжения, то траектория, начинающаяся в ней, с течением времени стремится к аттрактору A. Область G1 показывает, насколько существенен этот аттрактор, как много траекторий он "притягивает". Обычно рассматривают не одну модель (динамическую систему), а семейство моделей, зависящих от параметра (например, состояния окружающей среды или какой-нибудь другой "медленной переменной"). При этом не так давно было открыто интересное явление, – метаморфозы областей притяжения аттрактора – катастрофическое, скачкообразное изменение этой области при малом изменении параметра.

Приведем простой "околоисторический" пример, показывающий, что это может означать. Допустим, что при данном значении параметра наша траектория, выходящая из точки B, стремится к аттрактору A. Именно аттрактор A определял, как иногда говорят историки, тенденции развития. Будучи предметом рефлексии общества, эти тенденции порождали определенные религиозные верования, философские системы, научные теории. Но ситуация изменилась, область притяжения аттрактора A уменьшилась, и точка C, в которую мы пришли из точки B, с течением времени (см. рис.6б) уже не принадлежит, к нашему сожалению, области притяжения аттрактора A. Внешне, если иметь в виду ближайшую перспективу и локальную окрестность нынешного состояния, почти ничего не изменилось. Однако в историческом, долговременном плане перемены оказываются радикальны – у общества изменилось будущее, изменилась "цель развития". Наверное, анализ, с этой точки зрения, отдельных периодов в истории различных цивилизаций был бы любопытен.

bf Нейросистемы, поиск закономерностей, новая техника "работы с незнанием". Одна из наиболее трудных задач как для историков, так и для специалистов по математическому моделированию – поиск причинно-следственных связей. Причем проблема многократно усложняется, если мы имеем дело с редкими, но исключительно важными событиями. Тут мы, с одной стороны, не знаем законов, определяющих ход исследуемых процессов, с другой стороны, не удается опереться на статистические методы анализа.

В настоящее время в одних областях разрабатываются, в других эффективно применяются компьютерные системы нового поколения, одной из основных задач которых является поиск закономерностей [40, 41]. Эти системы, получившие название нейрокомпьютеров или нейросистем, имитируют некоторые важные особенности работы мозга. Это позволяет не писать программы, определяющие действия компьютера для всех ситуаций, с которыми он может встретиться, а обучать его, предъявляя набор примеров или образцов. Очень быстрый прогресс в этой области, растущие масштабы использования нейросистем в экономике и банковском деле вселяют надежду на то, что вскоре эта технология компьютерного анализа будет использоваться и в исторических исследованиях.

1 ... 22 23 24 25 26 27 28 29 30 ... 38
Перейти на страницу:
Тут вы можете бесплатно читать книгу Синергетика и прогнозы будущего - С. Капица.
Комментарии