Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » По ту сторону кванта - Леонид Пономарев

По ту сторону кванта - Леонид Пономарев

Читать онлайн По ту сторону кванта - Леонид Пономарев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 57
Перейти на страницу:

До сих пор, исходя из уравнений электродинамики, все пытались найти гипотетическую траекторию электрона в атоме, которая непрерывно зависит от времени и которую можно задать рядом чисел х1, х2, х3…, отмечающих положение электрона в моменты времени t1, t2, t3. Гейзенберг утверждал: такой траектории в атоме нет, а вместо непрерывной кривой X(t) есть набор дискретных чисел Xnk, значения которых зависят от номеров n и k начального и конечного состояний электрона.

Это важное и довольно сложное утверждение можно пояснить простой аналогией. Представьте, что перед вами шахматная доска, по которой ползет муха. При желании можно очень подробно проследить ее путь, если в каждый момент времени t отмечать ее положение х. По этим измерениям вы затем легко сможете начертить кривую X(t), то есть траекторию движения мухи. Если у вас нет такого желания, то вы можете ограничиться только указанием квадратов, которые посетила муха на своем пути. Это тоже даст некую информацию о ее перемещении, но легко сообразить, что с точки зрения классической механики такое описание будет неполным.

Теперь представьте, что вы за той же доской играете в шахматы и решили, например, сделать традиционный ход е2—е4. В этом случае результат вашего хода совершенно не зависит от того, по какому пути вы передвинули пешку. Это и понятно: правила шахматной игры не зависят от законов механики, а потому и не нуждаются в понятии траектории.

Гейзенберг сообразил, что «правила атомной игры» тоже не требуют знания траектории. В соответствии с этим ой представил состояние атома в виде бесконечной шахматной доски, в каждом квадрате которой написаны числа Xnk. Естественно, что значения этих чисел зависят от положения квадрата на «атомной доске», то есть от номера n строки (начальное состояние) и номера столбца k (конечное состояние), на пересечении которых стоит число Xnk.

Состояние атома в виде бесконечной шахматной доски

Никого не удивляет тот факт, что запись шахматной партии позволяет повторить ее даже много лет спустя. Конечно, при этом мы не узнаем, как долго она длилась в действительности, что переживали при этом шахматисты и как именно двигали они пешки и фигуры. Но это и неважно, коль скоро нам интересна только игра сама по себе.

Точно так же, если нам известны числа Xnk — эта своеобразная запись «атомной игры», — мы знаем об атоме все необходимое, чтобы предсказать его наблюдаемые свойства: спектр атома, интенсивность его спектральных линий, число и скорость электронов, выбитых из атома ультрафиолетовыми лучами, а также многое другое.

Числа Xnk нельзя назвать координатами электрона в атоме. Они заменяют их, или, как стали говорить позже, представляют их. Но что означают эти слова — на первых порах не понимал и сам Гейзенберг.

Действительно, вместо таблицы чисел {Хnk} с таким же успехом можно нарисовать все, что угодно, скажем цветок, и сказать, что именно он представляет движение электрона в атоме. Однако тут же с помощью Макса Борна (1882–1970) и Паскуаля Иордана удалось понять, что таблица чисел {Хnk} не просто таблица, а матрица.

Что означает это слово? Математика имеет дело с величинами и символами, и каждый символ в ней подчиняется своим правилам действия. Например, простые числа можно складывать и вычитать, умножать и делить, и результат этих действий не зависит от того, в каком порядке мы эти действия производим: 5 + 3 = 3 + 5 и 5 3 = 3 • 5.

Но в математике есть и более сложные объекты: отрицательные и комплексные числа, матрицы и т. д. Матрицы — это таблицы величин типа {Xnk}, для которых существуют свои строго определенные операции сложения и умножения.

Матрицы

В частности, результат перемножения двух матриц зависит от порядка, в котором они перемножаются, и

{Xnk} {Pnk} ≠ {Pnk} • {Xnk}.

Это правило может показаться странным и подозрительным, но никакого произвола в себе не содержит. По существу, именно это правило отличает матрицы от других величин. Менять его по своей прихоти мы не вправе — в математике тоже есть свои незыблемые законы. Законы эти, независимые от физики и всех других наук, закрепляют на языке символов все мыслимые логические связи в природе. Причем заранее неизвестно, реализуются ли все эти связи в действительности.

Конечно, математики о матрицах знали задолго до Гейзенберга и умели с ними работать. Однако для всех было полной неожиданностью, что эти странные объекты с непривычными свойствами соответствуют чему-то реальному в мире атомных явлений. Заслуга Гейзенберга и Борна в том и состоит, что они преодолели психологический барьер, нашли соответствие между свойствами матриц и особенностями движения электронов в атоме и тем самым основали новую, атомную, квантовую, матричную механику.

Атомную — потому, что она описывает движение электронов в атоме.

Квантовую — ибо главную роль в этом описании играет понятие кванта действия h.

Матричную — поскольку математический аппарат, необходимый для этого, — матрицы.

В новой механике каждой характеристике электрона: координате х, импульсу р, энергии Е — сопоставлялись соответствующие матрицы: {Xnk}, {Pnk} и {Enk} — и уже для них (а не для чисел) записывали уравнения движения, известные из классической механики. А затем надо было только проследить, чтобы все действия над величинами {Xnk}, {Pnk}, {Enk} не нарушали правил математики.

Гейзенберг установил даже нечто большее: он выяснил, что квантовомеханические матрицы координаты {Xnk} и импульса {Pnk} — это не вообще матрицы, а только те из них, которые подчиняются коммутационному (или перестановочному) соотношению:

{Xnk} {Pnk} — {Pnk} • {Xnk} = i ħ,

где i = √ (-1), а = h/2π.

В новой механике это перестановочное соотношение играло точно такую же роль, как условие квантования Бора в старой механике. И точно так же, как условия Бора выделяли стационарные орбиты из набора всех возможных, коммутационное соотношение Гейзенберга выбирает из множества всех матриц только квантовомеханические.

Не случайно, что в обоих случаях — и в условиях квантования Бора, и в уравнениях Гейзенберга — необходимо присутствует постоянная Планка h. Как мы увидим в дальнейшем, постоянная Планка непременно входит во все уравнения квантовой механики, и по этому признаку их можно безошибочно отличить от всех других уравнений.

Новые уравнения, которые нашел Гейзенберг, были непохожи ни на уравнения механики, ни на уравнения электродинамики и потому никак не могли их нарушить. С точки зрения этих уравнений состояние атома полностью задано, если известны все числа Xnk или Pnk, то есть известны матрицы {Xnk} или {Рnk}. Причем структура этих матриц такова, что в невозбужденном состоянии атом не излучает.

Обратите внимание: в наших рассуждениях нигде не использовано понятие «движение электрона в атоме». Теперь Оно просто не нужно. Согласно Гейзенбергу движение — это не перемещение электрона-шарика по какой-либо траектории вокруг ядра.

Движение — это изменение состояния системы во времени, которое описывается матрицами {Xnk} и {Pnk}.

Вместе с вопросами о характере движения электрона в атоме сам собой отпал и вопрос, об устойчивости атома. С новой точки зрения в невозбужденном атоме электрон покоится, а потому и не должен излучать.

Теория Гейзенберга была внутренне непротиворечива, чего схеме Бора так недоставало. Вместе с тем она приводила к таким же результатам, что и правила квантования Бора. Кроме того, с ее помощью удалось наконец показать, что гипотеза Планка о квантах излучения Е = hν — это простое и естественное следствие новой механики.

Можно и дальше пытаться без формул излагать следствия механики Гейзенберга. Однако это будет так же неестественно, как попытка пересказать словами музыку.

Чтобы постигнуть глубины квантовой механики, необходимо штудировать математику, учиться работать с матрицами — одним словом, надо овладевать ремеслом физика.

В матрицах нет ничего мистического или непостижимого: изучить их значительно проще, чем усвоить, скажем, латынь. Но, пожалуй, не стоит этого делать в автобусе. Этому, как и музыке, надо учиться специально. Иначе неприятный осадок полузнания отравит даже то удовольствие, которое доступно каждому: без формул и вычислений почувствовать красоту образов и законченность понятий любой глубокой науки.

Глубины математики

Появление матричной механики Гейзенберга физики встретили с огромным облегчением: «Механика Гейзенберга снова вернула мне радость жизни и надежду. Хотя она и не дает решения загадки, но я верю, что теперь снова можно продвигаться вперед», — писал Паули 9 октября 1925 года.

1 ... 23 24 25 26 27 28 29 30 31 ... 57
Перейти на страницу:
Тут вы можете бесплатно читать книгу По ту сторону кванта - Леонид Пономарев.
Комментарии