Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Читать онлайн Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 23 24 25 26 27 28 29 30 31 ... 116
Перейти на страницу:

Расчёты Планка показали, что дискретность допустимой энергии волн избавляет от нелепого результата о бесконечной суммарной энергии. Нетрудно понять, почему это так. Когда духовка нагревается до некоторой заданной температуры, то согласно расчётам, основанным на термодинамике XIX в., каждая волна вносит свой вклад в общую энергию. Однако, подобно компаньонам, которые не могут внести обычную сумму платы домовладельцу, поскольку номинал их денег слишком велик, если минимальная энергия, которую может переносить конкретная волна, превышает её ожидаемый энергетический вклад, она не даёт вклада вообще и остаётся безучастной. Поскольку минимальная энергия, которую может нести волна, согласно Планку, пропорциональна её частоте, то, исследуя волны в духовке и переходя к волнам со всё более высокой частотой (всё меньшей длиной волны), рано или поздно обнаружится, что минимальная энергия, которую может нести волна, превышает ожидаемый энергетический вклад. Подобно компаньонам, которым доверили банкноты с номиналом, превышающим двадцать долларов, эти волны с возрастающими частотами не могут дать вклада, которого требует физика XIX в. Аналогично тому, что только конечное число компаньонов смогло заплатить за тепло, и общая сумма оказалась конечной, только конечное число волн может дать вклад в общую энергию печи, что опять же приводит к конечности полного количества энергии. Говорим ли мы об энергии или о деньгах, порционность фундаментальных единиц и всё возрастающий размер этих единиц по мере того, как мы переходим к более высоким частотам (или к более крупным купюрам), приводит к замене бесконечного ответа конечным.[14]

Избавившись от очевидно абсурдного бесконечного результата, Планк сделал важный шаг. Но то, что действительно заставило людей поверить в справедливость его догадки — замечательное совпадение результата его нового подхода для вычисления энергии в духовке с экспериментальными данными. Планк обнаружил, что подстроив один параметр, входящий в его новую расчётную схему, можно точно предсказать результаты измерения энергии в духовке для любой заданной температуры. Этот параметр представляет собой коэффициент пропорциональности между частотой волны и минимальным количеством энергии, которую волна может нести. Планк установил, что этот коэффициент пропорциональности, известный ныне как постоянная Планка и обозначаемый символом ħ, составляет в обычных единицах примерно одну миллиардную от одной миллиардной от одной миллиардной доли.[15] Ничтожно малая величина постоянной Планка означает, что размер порций энергии обычно очень мал. По этой причине нам, например, кажется, что мы заставляем энергию волны, создаваемой струной скрипки (и, следовательно, громкость звука), изменяться непрерывно. В действительности, однако, энергия волны изменяется дискретными шагами согласно формуле Планка, но размер этих шагов настолько мал, что дискретные скачки от одного уровня громкости к другому кажутся нам плавными переходами. По утверждению Планка, амплитуда этих скачков энергии растёт по мере увеличения частоты волны (сопровождаемого уменьшением длины волны). Это тот основной момент, который разрешает парадокс бесконечной энергии.

Как мы увидим далее, квантовая гипотеза Планка не просто позволяет понять энергетику духовки, но идёт гораздо дальше. Она опрокидывает многое из того, что мы считали само собой разумеющимся. Малое значение постоянной Планка заточает в границы микромира большинство отклонений от привычной картины, но если бы постоянная ħ была гораздо больше, то происходящие в H-баре странные вещи стали бы обыденными. Как мы увидим, аналоги этих странностей являются привычным делом в микромире.

Что представляют собой порции?

Планк не мог обосновать гипотезу дискретности энергии волн, играющую центральную роль в предложенном им решении. За исключением того, что это работает, ни у Планка, ни у кого-либо ещё не было никакого рационального объяснения, почему всё должно быть именно так. Как заметил однажды физик Георгий Гамов, это подобно тому, как если бы природа разрешала либо пить целый литр пива, либо не пить совсем, не допуская никаких промежуточных доз.{18} В 1905 г. Эйнштейн нашёл объяснение, за которое он получил Нобелевскую премию 1921 г. по физике.

Эйнштейн пришёл к своему объяснению, пытаясь решить проблему, известную под названием фотоэлектронной эмиссии (фотоэффекта). В 1887 г. немецкий физик Генрих Герц впервые обнаружил, что когда электромагнитное излучение (свет) падает на некоторые металлы, они испускают электроны. Само по себе это свойство не слишком удивительно. Известно, что некоторые из электронов металлов слабо связаны с ядрами атомов (именно поэтому металлы являются столь хорошими проводниками электричества). Когда свет сталкивается с поверхностью металла, он отдаёт энергию: при столкновении с вашей кожей это приводит к нагреву тела. Переданная энергия может возбуждать электроны в металлах, при этом некоторые из слабосвязанных электронов могут выбиваться с поверхности.

Странные свойства фотоэффекта становятся явными при более детальном изучении характеристик испускаемых электронов. На первый взгляд может показаться, что при увеличении интенсивности (яркости) света скорость вылетевших электронов также должна увеличиваться, поскольку падающее электромагнитное излучение будет нести больше энергии.

Однако этого не происходит. Вместо этого происходит увеличение числа вылетевших электронов, но их скорость остаётся постоянной. С другой стороны, было экспериментально установлено, что скорость вылетевших электронов увеличивается при увеличении частоты падающего света и, соответственно, уменьшается при её уменьшении. (Для электромагнитных волн в видимой части спектра увеличение частоты соответствует изменению цвета от красного к оранжевому, жёлтому, зелёному, голубому, синему и, наконец, к фиолетовому. Излучение, частота которого превышает частоту фиолетового света, невидимо: эта часть спектра начинается с ультрафиолетового излучения, за которым следует рентгеновское. Электромагнитные волны, частота которых ниже частоты красного света, также невидимы; они соответствуют инфракрасному излучению.) В действительности, при уменьшении частоты света наступает момент, когда скорость вылетевших электронов падает до нуля, и они перестают вылетать с поверхности независимо от интенсивности источника света. По какой-то неизвестной причине цвет падающего луча света, а не его полная энергия, определяет, испускаются ли электроны, и если испускаются, то какую энергию имеют.

Чтобы понять, как Эйнштейн объяснил эти загадочные факты, вернёмся к нашему арендуемому помещению, которое теперь нагревается до комфортной температуры 25 °C. Представим, что ненавидящий детей домовладелец потребовал, чтобы все, кому не исполнилось пятнадцати лет, жили в подвале, который взрослые могут видеть с балкона, опоясывающего здание. Более того, любой из огромного количества детей в подвале может выйти из здания, лишь заплатив привратнику плату за выход в 85 центов. (Этот домовладелец такой негодяй.) Взрослые, которые согласно вашему предложению распределили все деньги по номиналам в соответствии с описанной выше схемой, могут передать деньги детям, только бросая их с балкона. Давайте посмотрим, что при этом произойдёт.

Держатель одноцентовых монет бросает несколько из них вниз, но это слишком малая сумма, чтобы кто-то из детей мог заплатить за выход. И, поскольку внизу находится «бесконечное» море детей, с криками сражающихся за падающие монеты, то даже если обладатель центов бросит огромное количество монет, ни один ребёнок не сможет собрать 85 центов, которые он должен уплатить. То же самое получится у тех взрослых, которые владеют пятицентовыми, десятицентовыми и двадцатипятицентовыми монетами. Хотя каждый из них бросит вниз огромное количество денег, любой ребёнок сочтёт за счастье, если ему достанется хотя бы одна монета (большинство же не получит ни одной), и уж точно никто не сможет набрать сумму в 85 центов, необходимую для выхода из подвала. Но когда деньги начнёт бросать владелец однодолларовых купюр — даже небольшими суммами, доллар за долларом, — те счастливчики, кому удастся поймать одну единственную банкноту, смогут сразу же покинуть подвал. Обратите внимание, что даже когда этот человек наверху как следует расщедрится и начнёт бросать доллары бочками, количество выходящих детей увеличится во много раз, но у каждого останется ровно 15 центов после получения сдачи у привратника. Это будет справедливо независимо от числа брошенных долларов.

Рассмотрим теперь, как применить всё это к фотоэффекту. Основываясь на рассмотренных выше экспериментальных данных, Эйнштейн решил распространить планковскую дискретную модель энергии волны на новое определение света. Согласно Эйнштейну, световой луч должен рассматриваться как поток микроскопических частиц света, окрещённых химиком Гильбертом Льюисом фотонами (мы уже использовали этот термин в примере со световыми часами, приведённом в главе 2). Для того чтобы дать представление о масштабах в рамках корпускулярной модели света, скажем, что обычная электрическая лампочка мощностью 100 Вт излучает примерно сто миллиардов миллиардов (1020) фотонов в секунду. Эйнштейн использовал это новое положение для объяснения механизма, лежащего в основе фотоэффекта. Он предположил, что электрон вырывается с поверхности металла, если с ним столкнётся фотон, обладающий достаточным количеством энергии. А чем определяется энергия отдельного фотона? Для объяснения экспериментальных данных Эйнштейн вслед за Планком предположил, что энергия каждого фотона пропорциональна частоте световой волны (при этом коэффициент пропорциональности равен постоянной Планка).

1 ... 23 24 25 26 27 28 29 30 31 ... 116
Перейти на страницу:
Тут вы можете бесплатно читать книгу Элегантная Вселенная. Суперструны, скрытые размерности и поиски окончательной теории - Брайан Грин.
Комментарии