Категории
Самые читаемые
PochitayKnigi » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ

Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 24 25 26 27 28 29 30 31 32 ... 55
Перейти на страницу:

  В области пространства-времени, в которой справедлива частная О. т., можно пользоваться и неинерционными системами отсчёта (так же, как можно пользоваться криволинейными координатами в геометрии Евклида), но при этом описание свойств пространства-времени оказывается более сложным.

  В данной и. с. о. необходимо определить способ измерения времени и координат. В и. с. о. трёхмерная пространственная геометрия — евклидова, если прямые определить, например, как траектории световых лучей, а расстояния измерять твёрдыми масштабами. Поэтому в данной и. с. о. можно ввести декартовы прямоугольные координаты х , у , z . Для определения времени t события можно принять, что в той точке, где оно произошло, находятся часы, покоящиеся в данной и. с. о. Если события происходят в разных точках A , В , то для сравнения их времён нужно синхронизировать часы в A и В , т.е. определить значение того, что часы в А и В показывают одинаковое время. Обычное определение таково: пусть в момент tA по часам в А посылается сигнал в В , а в момент его прибытия в В посылается такой же сигнал из В в A ; если сигнал пришёл в А в момент t’A , то принимается, что сигнал пришёл в В в момент tB = (tA + tA )/2 и соответственно устанавливаются часы в В . При таком определении времена распространения сигнала из A в В и из В в А одинаковы и равны (tAtA )/2. Сигналами могут служить световые вспышки, звуковые сигналы (если среда, в которой они распространяются, покоится по отношению к данной системе отсчёта), выстрелы из двух одинаковых орудий, установленных в A и В , и т.д., требуется лишь, чтобы условия передачи сигнала из А в В и из В в А были одинаковыми. Целесообразность такого определения времени связана с тем, что в любой и. с. о. отсутствует какое-либо физически выделенное направление; описанная процедура синхронизации часов симметрична относительно A и В и поэтому не вносит анизотропии в способ описания. Отсутствие выделенного направления проявляется в том, что синхронизация любыми сигналами приводит к одному и тому же результату; к такому же результату приводит медленный (с u << с ) перенос часов из A в В . При практических измерениях времён и координат используются многочисленные косвенные методы, при условии, что они дают такой же результат, как и описанные выше процедуры. В любой другой и. с. о. координаты и время измеряются с помощью таких же масштабов и часов, синхронизируемых таким же способом. Заранее не очевидно, что времена, определённые таким образом в двух различных и. с. о., будут одними и теми же, и они действительно оказываются различными. После того как синхронизация произведена, могут измеряться скорости частиц и сигналов в данной и. с. о., в частности скорость распространения световых сигналов. Скорость света в любой и. с. о. всегда равна с .

  Преобразования Лоренца

  Рассмотренные выше активные преобразования непосредственно связаны с пассивными преобразованиями, описывающими связь между координатами и временем данного события в двух различных и. с. о. В силу принципа относительности безразлично, сообщить ли телу скорость V по отношению к данной и. с. о. L или перейти к системе отсчёта L ¢, движущейся со скоростью V относительно L , — закон преобразования координат и времени должен быть одним и тем же.

  Вследствие справедливости симметрий 1—4, преобразования, связывающие координаты и времена событий х , у , z , t и х’ , у’ , z’ , t’ , измеренные в двух и. с. о. L и L’ , должны быть линейными. Из симметрий 1—4 и требования, чтобы преобразования составляли группу, можно получить вид этих преобразований. Если система отсчёта L ’ движется относительно L со скоростью V , то при надлежащем выборе осей координат и начал отсчёта времени в L и L’ (оси х и х’ совпадают и направлены по V , оси у и у’ , z и z’ соответственно параллельны, начала координат О и О’ совпадают при t = 0 и часы в L’ установлены так, что при t = 0 часы в О’ показывают время t’ = 0) преобразования координат и времени имеют вид:

,  ,  , (2)

  где с – произвольная постоянная, имеющая смысл предельной скорости движения (равной скорости света в вакууме). Эта постоянная может быть определена из любого эффекта О. т. (например, замедления времени распада быстрого p-мезона). Справедливость кинематики и динамики, основанных на преобразованиях (2), подтверждена неисчислимой совокупностью экспериментальных фактов.

  Преобразования Лоренца (2) вместе с преобразованиями вращения вокруг начала координат образуют группу Лоренца; добавление к ней сдвигов во времени t’ = t + а и в пространстве х’ = х + b (где a , b произвольные постоянные размерности времени и длины) даёт группу Пуанкаре.

  Из принципа относительности вытекает, что физические законы должны иметь одинаковую форму во всех и. с. о.; следовательно, они должны сохранять свой вид при преобразованиях Лоренца. Это требование называется принципом (постулатом) релятивистской инвариантности, или лоренц-инвариантности (лоренц-ковариантности), законов природы.

  Из преобразований Лоренца вытекает релятивистский закон сложения скоростей. Если частица или сигнал движется в L по оси х со скоростью u , то в момент tx = ut и скорость частицы u’ = x’ / t’ , измеряемая в системе L’ , равна:

  (3)

  Эта формула отражает основную черту релятивистской кинематики — независимость скорости света от движения источника. Действительно, если скорость света, испущенного покоящимся в некоторой и. с. о. L источником, есть с , u = с , то из закона сложения скоростей (2) получаем, что измеренная в и. с. о. L’ скорость света u’ также равна с . Так как направление оси х произвольно, то отсюда следует независимость скорости света от движения источника. Это свойство скорости света однозначно определяет вид преобразований Лоренца: постулировав независимость скорости света от движения источника, однородность пространства и времени и изотропию пространства, можно вывести преобразования Лоренца.

  Особая роль скорости света в О. т. связана с тем, что она является предельной скоростью распространения сигналов и движения частиц, достигаемой при энергии частицы, стремящейся к бесконечности, или массе, стремящейся к нулю; если бы масса покоя m g фотона оказалась хотя и очень малой, но отличной от нуля (экспериментально установлено, что m g < 4×10–21 m e , где me — масса электрона), то скорость света была бы меньше предельной. Чтобы предельная скорость вообще могла существовать, она не должна зависеть от движения источника частиц.

  Из преобразований Лоренца легко получить основные эффекты О. т.: относительность одновременности, замедление времени, сокращение продольных размеров движущихся тел. Действительно, события 1, 2, одновременные в одной и. с. о. L : t 1 = t 2 и происходящие в разных точках x 1 , x 2 , оказываются неодновременными в другой и. с. о. L’ : . Далее, когда часы, покоящиеся в L в точке х = 0, показывают время t , то время t’ по часам в L’ , пространственно совпадающим с часами в L в этот момент времени, есть

 (4)

  или

 (4, а)

  т. е. с точки зрения наблюдателя в L’ часы в L отстают. В силу принципа относительности отсюда следует, что с точки зрения наблюдателя в L’ , все процессы в L замедлены в такое же число раз.

1 ... 24 25 26 27 28 29 30 31 32 ... 55
Перейти на страницу:
Тут вы можете бесплатно читать книгу Большая Советская Энциклопедия (ОТ) - БСЭ БСЭ.
Комментарии