6a. Электродинамика - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
Но если мы имеем выражение Dffg, то оно означает
Заметим теперь, что, согласно нашему новому правилу, fDfg означает то же самое. Одно и то же выражение можно записать любым из следующих способов:
Вы видите, что Dfможет стоять даже после всего. (Странно, почему такому удобному обозначению обычно не учат в книгах по математике и физике.)
Вы, пожалуй, удивитесь: а что, если я хочу написать производную от fg? Если мне нужна производная от обоих членов? Это очень легко: вы пишете Df(fg)+Dg(fg),т.e.g(df/dx)+f(dg/dx), что в старых обозначениях как раз равно d(fg)/dx.
Вы сейчас увидите, как просто теперь получить новое выражение для С·(ВXЕ). Начнем с перехода к новому обозначению и напишем
(27.10)
Как только мы сделали это, уже нет больше нужды придерживаться строгого порядка. Мы всегда знаем, что СE действует только на Е, a СB действует только на В. При этих обстоятельствах оператором С можно пользоваться как обычным вектором. (Разумеется, после того как все будет окончено, нам захочется вернуться к «стандартным» обозначениям, которые обычно используются.) Таким образом, теперь мы можем делать различные перестановки сомножителей. Так, средний сомножитель в уравнении (27.10) можно переписать как Е·(СBXВ). [Надеюсь, вы помните, что a·(bXc) = b·(cXa).] А последний — как В·(EXСE). Хотя это выглядит несколько странно, но тем не менее здесь все в порядке. Если же мы теперь попытаемся вернуться к старым обозначениям, то должны будем расположить операторы С так, чтобы они действовали на свои «собственные» переменные. В первом из них все в порядке, так что мы можем просто опустить индекс у С. Второй же требует некоторой реорганизации, чтобы оператор С поставить перед Е. Этого можно
добиться, переставляя сомножители в векторном произведении и меняя знак:
Теперь все стоит на своем месте и можно вернуться к обычным обозначениям. Формула (27.10) эквивалентна следующему равенству:
(В этом специальном случае быстрее было бы использовать компоненты, но, право же, стоило потратить время ради того, чтобы показать вам математический трюк. Может случиться, что вы больше нигде его не встретите, а он очень удобен тогда, когда в векторной алгебре нужно освободиться от правила порядка членов при дифференцировании.)
Вернемся теперь к нашему закону сохранения энергии, причем для преобразования СXB в (27.7) мы используем новый результат — равенство (27.11). Вот что оно дает:
Теперь вы видите, что мы почти у цели. Одно из наших слагаемых — настоящая производная no t, ее мы используем при образовании и, а другое (превосходная дивергенция) войдет в S. К несчастью, справа в середине осталось еще одно слагаемое, которое не является ни дивергенцией, ни производной по t. Так что пока еще не все закончено. После некоторых размышлений мы опять обращаемся к уравнениям Максвелла и, к счастью, обнаруживаем, что (СXE) равно —dB/dt.
Это позволяет превратить дополнительный член в чистую производную чего-то по времени:
Вот теперь у вас получилось то, что нужно. Уравнение для энергии переписывается в виде
А это, если мы определим u и S как
(27.14)
и
(27.15)
в точности напоминает уравнение (27.6). (Перестановкой сомножителей в векторном произведении мы добиваемся правильного знака.)
Итак, наша программа успешно выполнена. Из выражения для плотности энергии мы видим, что она представляет сумму «электрической» и «магнитной» плотностей энергии, которые в точности равны выражениям, полученным нами в статике, когда мы находили выражение для энергии через поля. Кроме того, мы получили выражение для вектора потока энергии электромагнитного поля. Этот новый вектор S=e0c2EXB по имени своего первооткрывателя называется «вектором Пойнтинга». Он говорит нам о скорости, с которой энергия движется в пространстве. Энергия, протекающая в секунду через малую поверхность da, равна S·nda, где n — вектор, перпендикулярный к поверхности da. (Теперь, когда у нас есть формулы для u и S, можете, если хотите, забыть все выкладки.)
§ 4. Неопределенность энергии поля
Прежде чем заняться некоторыми приложениями формул Пойнтинга [т. е. выражений (27.14) и (27.15)], я хотел бы заметить, что на самом деле мы их не «доказали». Все, что мы сделали,— это нашли только возможное u и возможное S. Но откуда же нам известно, что, покрутив формулами, мы не придем к другому выражению для u и другому выражению для S? Новое S и новое и будут отличаться от старых, но по-прежнему будут удовлетворять уравнению (27.6). Такое вполне может случиться. Однако в формулы, которые получаются при этом, всегда входят различные производные полей (причем это всегда члены второго порядка типа второй производной или квадрата первой производной). Для u и S можно фактически написать бесконечное число различных выражений, и до сих пор никто не думал над экспериментальной проверкой того, которое же из них истинное. Люди полагают, что простейшее выражение, по-видимому, и должно быть истинным, но надо сознаться, что мы так и не знаем, как же на самом деле распределена энергия в электромагнитном поле. Пойдем по тому же легчайшему пути и постулируем, что энергия поля определяется выражением (27.14). При этом вектор потока S должен задаваться уравнением (27.15).
Самое интересное то, что единого способа избавиться от неопределенности энергии поля, по-видимому, вообще нет. Иногда утверждают, что эту проблему можно разрешить, используя теорию гравитации; при этом приводятся такие доводы. В теории гравитации источником гравитационного притяжения является вся энергия. Поэтому если нам известно, какие гравитационные силы действуют на свет, то можно правильно определить плотность энергии электричества. До сих пор, однако, такими тонкими экспериментами, которые позволили бы точно определить гравитационное влияние на электромагнитное поле, никто не занимался. Впрочем, установлено, что свет при прохождении около Солнца отклоняется, поэтому мы можем говорить, что Солнце притягивает к себе свет. Во всяком случае, найденные нами выражения для электромагнитной энергии и потока всегда всеми признавались. И хотя иногда результаты, полученные с их использованием, казались странными, никто никогда не обнаружил в них чего-то невероятного, какого-то расхождения с экспериментом. Согласимся со всеми и будем считать, что, по-видимому, здесь все в порядке.
Мне хотелось бы сделать еще одно замечание о формуле для энергий. Прежде всего формула для энергии поля в единице объема очень проста — это сумма электрической и магнитной энергий, если электрическую энергию мы определим как Е2, а магнитную — как В2. Эти выражения были найдены нами как возможные выражения для энергии при рассмотрении статических задач. Кроме него, мы нашли для энергии электростатического поля и несколько других выражений, например j, которое в электростатическом случае равно интегралу от Е·Е. Однако в электродинамическом случае это равенство нарушается, и нет критерия, позволяющего установить, которая из формул правильна. Но теперь мы это знаем. Аналогично, мы нашли выражение для магнитной энергии, которое верно в самом общем случае.
§ 5. Примеры потоков энергии
Наша формула для вектора потока энергии S представляет нечто новое. Теперь следует посмотреть, насколько она годится в некоторых специальных случаях, а также проверить ее на том, что мы знали раньше. Первым нашим примером будет свет. В световой волне векторы Е и В направлены под прямым углом друг к другу и направлению распространения волны (фиг. 27.2). В электромагнитной волне величина В равна (1/с)Е, а поскольку они направлены под прямым углом, то величина (ЕXE) равна просто Е2/с. Таким образом, для света поток энергии в секунду через единичную поверхность равен
(27.16)
Фиг. 27.2. Векторы Е, В и S световой волны.
В световой волне, где E=E0cosw(t-х/с), средняя скорость потока энергии через единичную площадь <S>ср, которая называется «интенсивностью» света, равна среднему значению электрического поля, помноженному на eас: