2.Внутреннее устройство Windows (гл. 5-7) - Марк Руссинович
Шрифт:
Интервал:
Закладка:
Резервирование адресного пространства позволяет потоку резервировать диапазон виртуальных адресов для последующего использования. Попытка доступа к зарезервированной памяти влечет за собой нарушение доступа, так как ее страницы не спроецированы на физическую память.
При попытке доступа адреса переданных страниц в конечном счете транслируются в допустимые адреса страниц физической памяти. Переданные страницы могут быть закрытыми (не предназначенными для разделения с другими процессами) или спроецированными на представление объекта-раздела (на которое в свою очередь могут проецировать страницы другие процессы).
Закрытые страницы процесса, к которым еще не было обращения, создаются при первой попытке доступа как обнуленные. Закрытые переданные страницы могут впоследствии записываться операционной системой в страничный файл (в зависимости от текущей ситуации). Такие страницы недоступны другим процессам, если только они не используют функции ReadProcessMemory или WriteProcessMemory. Если переданные страницы спроецированы на часть проецируемого файла, их скорее всего придется загрузить с диска — при условии, что они не были считаны раньше из-за обращения к ним того же или другого процесса, на который спроецирован этот файл.
Страницы записываются на диск по обычной процедуре записи модифицированных страниц, которые перемещаются из рабочего набора процесса в список модифицированных страниц и в конечном счете на диск (о рабочих наборах и списке модифицированных страниц — чуть позже). Страницы проецируемого файла можно сбросить на диск явным вызовом функции FlushViewOfFile.
Для возврата страниц (decommitting) и/или освобождения виртуальной памяти предназначена функция VirtualFree или VirtualFreeEx. Различия между возвратом и освобождением страниц такие же, как между резервированием и передачей: возвращенная память все еще зарезервирована, тогда как освобожденная память действительно свободна и не является ни переданной, ни зарезервированной.
Такой двухэтапный процесс (резервирование и передача) помогает снизить нагрузку на память, откладывая передачу страниц до реальной необходимости в них. Резервирование памяти — операция относительно быстрая и не требующая большого количества ресурсов, поскольку в данном случае не расходуется ни физическая память (драгоценный системный ресурс), ни квота процесса на ресурсы страничного файла (число страниц, передаваемых процессу из страничного файла). При этом нужно создать или обновить лишь сравнительно небольшие внутренние структуры данных, отражающие состояние адресного пространства процесса. (Об этих структурах данных, называемых дескрипторами виртуальных адресов, или VAD, мы расскажем потом.)
Резервирование памяти с последующей ее передачей особенно эффективно для приложений, нуждающихся в потенциально большой и непрерывной области виртуальной памяти: зарезервировав требуемое адресное пространство, они могут передавать ему страницы порциями, по мере необходимости. Эта методика применяется и для организации стека пользовательского режима для каждого потока. Такой стек резервируется при создании потока. (Его размер по умолчанию — 1 Мб; другой размер стека для конкретного потока можно указать при вызове CreateThread. Если вы хотите изменить его для всех потоков процесса, укажите при сборке программы флаг /STACK.) По умолчанию стеку передается только начальная страница, а следующая страница просто помечается как сторожевая (guard page). За счет этой страницы, которая служит своего рода ловушкой для перехвата ссылок за ее пределы, стек расширяется только по мере заполнения.
Блокировка памятиB целом, принятие решений о том, какие страницы следует оставить в физической памяти, лучше сохранить за диспетчером памяти. Однако в особых обстоятельствах можно подкорректировать работу диспетчера памяти. Существует два способа блокировки страниц в памяти.
• Windows-приложения могут блокировать страницы в рабочем наборе своего процесса через функцию VirtualLock. Максимальное число страниц, которые процесс может блокировать, равно минимальному размеру его рабочего набора за вычетом восьми страниц. Следовательно, если процессу нужно блокировать большее число страниц, он может увеличить минимальный размер своего рабочего набора вызовом функции SetProcessWorkingSetSize (см. раздел «Управление рабочим набором» далее в этой главе).
• Драйверы устройств могут вызывать функции режима ядра MmProbeAndLockPages, MmLockPagableCodeSection и MmLockPagableSectionByHandle. Блокированные страницы остаются в памяти до снятия блокировки. Хотя число блокируемых страниц не ограничивается, драйвер не может блокировать их больше, чем это позволяет счетчик доступных резидентных страниц.
Гранулярность выделения памятиWindows выравнивает начало каждого региона зарезервированного адресного пространства в соответствии с гранулярностью выделения памяти (allocation granularity). Это значение можно получить через Windows-функцию GetSystemInfo. B настоящее время оно равно 64 Кб. Такая величина выбрана из соображений поддержки будущих процессоров с большим размером страниц памяти (до 64 Кб) или виртуально индексируемых кэшей (virtually indexed caches), требующих общесистемного выравнивания между физическими и виртуальными страницами (physical-to-virtual page alignment). Благодаря этому уменьшается риск возможных изменений, которые придется вносить в приложения, полагающиеся на определенную гранулярность выделения памяти. (Это ограничение не относится к коду Windows режима ядра — используемая им гранулярность выделения памяти равна одной странице.)
Windows также добивается, чтобы размер и базовый адрес зарезервированного региона адресного пространства всегда был кратен размеру страницы. Например, системы типа x86 используют страницы размером 4 Кб, и, если вы попытаетесь зарезервировать 18 Кб памяти, на самом деле будет зарезервировано 20 Кб. A если вы укажете базовый адрес 3 Кб для 18-килобайтного региона, то на самом деле будет зарезервировано 24 Кб.
Разделяемая память и проецируемые файлыКак и большинство современных операционных систем, Windows поддерживает механизм разделения памяти. Разделяемой (shared memory) называется память, видимая более чем одному процессу или присутствующая в виртуальном адресном пространстве более чем одного процесса. Например, если два процесса используют одну и ту же DLL, есть смысл загрузить ее код в физическую память лишь один раз и сделать ее доступной всем процессам, проецирующим эту DLL (рис. 7–1).
Каждый процесс поддерживает закрытые области памяти для хранения собственных данных, но программные инструкции и страницы немодифицируемых данных в принципе можно использовать совместно с другими процессами. Как вы еще увидите, такой вид разделения реализуется автоматически, поскольку страницы кода в исполняемых образах проецируются с атрибутом «только для выполнения», а страницы, доступные для записи, — с атрибутом «копирование при записи» (copy-on-write) (см. раздел «Копирование при записи» далее в этой главе).
Для реализации разделяемой памяти используются примитивы диспетчера памяти, объекты «раздел», которые в Windows API называются объектами «проекция файла» (file mapping objects). Внутренняя структура и реализация этих объектов описывается в разделе «Объекты-разделы» далее в этой главе.
Этот фундаментальный примитив диспетчера памяти применяется для проецирования виртуальных адресов в основной памяти, страничном файле или любых других файлах, к которым приложение хочет обращаться так, будто они находятся в памяти. Раздел может быть открыт как одним процессом, так и несколькими; иначе говоря, объекты «раздел» вовсе не обязательно представляют разделяемую память.
Объект «раздел» может быть связан с открытым файлом на диске (который в этом случае называется проецируемым) или с переданной памятью (для ее разделения). Разделы, проецируемые на переданную память, называются разделами, поддерживаемыми страничными файлами (page file backed sections), так как при нехватке памяти их страницы перемещаются в страничный файл. (Однако Windows может работать без страничного файла, и тогда эти разделы «поддерживаются» физической памятью.) Разделяемые переданные страницы, как и любые другие страницы, видимые в пользовательском режиме (например, закрытые переданные страницы), всегда обнуляются при первом обращении к ним.
Для создания объекта «раздел» используется Windows-функция Create-FileMapping, которой передается описатель проецируемого файла (или INVALID_HANDLE_VALUE в случае раздела, поддерживаемого страничным файлом), а также необязательные имя и дескриптор защиты. Если разделу присвоено имя, его может открыть другой процесс вызовом OpenFileMapping. Кроме того, вы можете предоставить доступ к объектам «раздел» через наследование описателей (определив при открытии или создании описателя, что он является наследуемым) или их дублирование (с помощью Duplicate-Handle). Драйверы также могут манипулировать объектами «раздел» через функции ZwOpenSection, ZwMapViewOfSection и ZwUnmapViewOfSection.