Категории
Самые читаемые

Суперсила - Девис Пол

Читать онлайн Суперсила - Девис Пол

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 25 26 27 28 29 30 31 32 33 ... 77
Перейти на страницу:

Со временем выяснилось, что представление о силе, передаваемой через пространство в форме сигнала, не так уж далеко от современного подхода к этой проблеме. Чтобы понять, каким образом возникает такое представление, следует рассмотреть более подробно природу силового поля. В качестве примера выберем не океанские приливы, а более простое явление: два электрона сближаются, а затем под действием электростатического отталкивания разлетаются в разные стороны. Физики называют этот процесс проблемой рассеяния. Разумеется, электроны не толкают друг друга буквально. Они взаимодействуют на расстоянии, через электромагнитное поле, порождаемое каждым электроном.

Рис.11 Рассеяние двух заряженных частиц. Траектории частиц искривляются по мере их сближения вследствие действия силы электрического отталкивания.

Нетрудно представить картину рассеяния электрона на электроне. Первоначально электроны разделены большим расстоянием и слабо воздействуют друг на друга. Каждый электрон движется почти прямолинейно (рис. 11). Затем, по мере того как в работу включаются силы отталкивания, траектории электронов начинают искривляться, пока частицы максимально не сблизятся; после этого траектории расходятся, а электроны разлетаются, вновь начиная двигаться по прямолинейным, но уже расходящимся траекториям. Модель такого рода нетрудно продемонстрировать в лаборатории, используя вместо электронов электрически заряженные шарики. И снова возникает вопрос: откуда частица “знает”, где находится другая частица, и соответственно этому меняет свое движение.

Хотя картина искривленных траекторий электронов довольно наглядна, она в ряде отношений совершенно непригодна. Дело в том, что электроны – квантовые частицы и их поведение подчиняется специфическим законам квантовой физики. Прежде всего электроны не движутся в пространстве по вполне определенным траекториям. Мы еще можем тем или иным способом определить начальную и конечную точки пути – до и после рассеяния, по сам путь в промежутке между началом и концом движения остается неизвестным и неопределенным. Кроме того, интуитивное представление о непрерывном обмене энергией и импульсом между электроном и полем, как бы ускоряющим электрон, противоречит существованию фотонов. Энергия и импульс могут переноситься полем только порциями, или квантами. Более точную картину возмущения, вносимого полем в движение электрона, мы получим, предположив, что электрон, поглощая фотон поля, как бы испытывает внезапный толчок. Следовательно, на квантовом уровне акт рассеяния электрона на электроне можно изобразить, как показано на рис. 12. Волнистая линия, соединяющая траектории двух электронов, соответствует фотону, испущенному одним электроном и поглощенному другим. Теперь акт рассеяния предстает как внезапное изменение направления движения каждого электрон

Рис.12. Квантовое описание рассеяния заряженных частиц. Взаимодействие частиц обусловлено обменом переносчиком взаимодействия, или виртуальным фотоном (волнистая линия).

Диаграммы такого рода впервые применил Ричард Фейнман для наглядного представления различных членов уравнения, и первоначально они имели чисто символическое значение. Но затем диаграммы Фейнмана стали использовать для схематического изображения взаимодействий частиц. Такие картинки как бы дополняют интуицию физика, однако их следует толковать известной долей осторожности. Например, в траектории электрона никогда не наблюдается резкого излома. Поскольку нам известны только начальное и конечное положения электронов, мы не знаем точно момента, когда происходит обмен фотоном, и какая из частиц испускает, а какая поглощает фотон. Все эти детали скрыты пеленой квантовой неопределенности.

Несмотря на это предостережение, диаграммы Фейнмана оказались эффективным средством квантового описания взаимодействия. Фотон, которым обмениваются электроны, можно рассматривать как своего рода посыльного одного из электронов, сообщающего другому: “Я здесь, так что пошевеливайся!”. Разумеется, все квантовые процессы носят вероятностный характер, поэтому подобный обмен происходит лишь с определенной вероятностью. Может случиться, что электроны обменяются двумя и более фотонами (рис. 13), хотя это менее вероятно.

Важно отдавать себе отчет в том, что в действительности мы не видим фотонов, снующих от одного электрона к другому. Переносчики взаимодействия – “внутреннее дело” двух электронов. Они существуют исключительно для того, чтобы сообщать электронам, как двигаться, и, хотя они переносят энергию и импульс, соответствующие законы сохранения классической физики на них не распространяются. Фотоны в этом случае можно уподобить мячу, которым обмениваются на корте теннисисты. Подобно тому как теннисный мяч определяет поведение теннисистов на игровой площадке, фотон влияет на поведение электронов.

Успешное описание взаимодействия с помощью частицы-переносчика сопровождалось расширением понятия фотона: фотон оказывается не только частицей видимого нами света, но и призрачной частицей, которую “видят” только заряженные частицы, претерпевающие рассеяние. Иногда наблюдаемые нами фотоны называют реальными, а фотоны, переносящие взаимодействие, – виртуальными, что напоминает об их скоротечном, почти призрачном существовании. Различие между реальными и виртуальными фотонами несколько условно, но тем не менее эти понятия получили широкое распространение.

Описание электромагнитного взаимодействия с использованием понятия виртуальных фотонов – его переносчиков – по своему значению выходит за рамки просто иллюстраций квантового характера. В действительности речь идет о продуманной до мельчайших деталей и оснащенной совершенным математическим аппаратом теории, известной под названием квантовой электродинамики, сокращенно КЭД. Когда КЭД была впервые сформулирована (это произошло вскоре после второй мировой войны), физики получили в свое распоряжение теорию, удовлетворяющую основным принципам как квантовой теории, так и теории относительности. Это прекрасный случай увидеть совместные проявления двух важных аспектов новой физики и. проверить их экспериментально.

Теоретически создание КЭД явилось выдающимся достижением. Более ранние исследования взаимодействия фотонов и электронов имели весьма ограниченный успех из-за математических трудностей. Но коль скоро теоретики научились правильно проводить вычисления, все остальное становилось на место. КЭД предложила процедуру получения результатов любого сколь угодно сложного процесса с участием фотонов и электронов.

Рис.13. Рассеяние электронов обусловлено обменом двумя виртуальными фотонами. Такие процессы составляют небольшую поправку к основному процессу, изображенному на рис. 11

Чтобы проверить, насколько хорошо теория согласуется с реальностью, физики сосредоточили внимание на двух эффектах, представлявших особый интерес. Первый касался энергетических уровней атома водорода – простейшего атома. КЭД предсказывала, что уровни должны быть слегка смещены относительно положения, которое они занимали бы, если бы не существовало виртуальных фотонов. Теория очень точно предсказывала величину этого смещения. Эксперимент по обнаружению и измерению смещения с предельной точностью осуществил Уиллис Лэмб из Университета шт. Аризона. Ко всеобщему восторгу результаты вычислений прекрасно совпадали с экспериментальными данными.

Вторая решающая проверка КЭД касалась чрезвычайно малой поправки к собственному магнитному моменту электрона. И снова результаты теоретических расчетов и эксперимента полностью совпали. Теоретики принялись уточнять вычисления, экспериментаторы – усовершенствовать приборы. Но, хотя точность как теоретических предсказаний, так и экспериментальных результатов непрерывно повышалась, соответствие между КЭД и экспериментом оставалось безукоризненным. Ныне теоретические и экспериментальные результаты по-прежнему согласуются в пределах достигнутой точности, что означает совпадение более девяти знаков после запятой. Столь поразительное соответствие дает право считать КЭД наиболее совершенной из существующих естественнонаучных теорий.

1 ... 25 26 27 28 29 30 31 32 33 ... 77
Перейти на страницу:
Тут вы можете бесплатно читать книгу Суперсила - Девис Пол.
Комментарии