Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Физика » По ту сторону кванта - Леонид Пономарев

По ту сторону кванта - Леонид Пономарев

Читать онлайн По ту сторону кванта - Леонид Пономарев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 57
Перейти на страницу:

ЛУЧИ

Железо, как и всякое вещество, состоит из атомов. Если один конец железного лома сунуть в печь, он, разумеется, начнет нагреваться. С точки зрения кинетической теории это означает, что атомы железа начнут двигаться быстрее (это можно обнаружить, коснувшись пальцами другого конца лома). Итак, теплота есть энергия движущихся атомов. Однако это далеко не все.

Нагревая лом, мы наблюдаем поразительное явление: с повышением температуры в печи постепенно меняется цвет нагретого железа: от вишнево-красного до ослепительно белого. Причем к лому теперь нельзя не только прикоснуться, но и просто подойти близко. Последнее уже непонятно, если пользоваться только представлением о движении атомов; действительно, мы не касались лома, атомы железа не ударялись о нашу руку — почему же нам стало жарко?

Здесь мы впервые сталкиваемся с положением, о котором предупреждали в самом начале. Мы должны ввести новое понятие, которое на первый взгляд никак не связано с идеей атома. Это понятие — излучение.

Мы говорим: лучи солнца осветили поляну. Значит, свет — это излучение. Но мы говорим также: греться в лучах солнца. Следовательно, и тепло может распространяться в виде лучей. Вообще с излучением мы имеем дело постоянно: когда сидим у костра, смотрим на закат, вращаем ручку настройки приемника или же делаем рентгеновский снимок грудной клетки. Все виды излучений: тепло, свет, радиоволны и рентгеновы лучи — различные проявления одного и того же электромагнитного излучения. Однако мы все-таки различаем виды излучений не только качественно и субъективно, но и строго количественно. По какому признаку? У электромагнитного излучения их много, но нам особенно важен сейчас один — его волновая природа.

Вероятно, в тысяче и одном учебнике свойства волны объяснены лучше и подробнее, чем мы это сделаем сейчас. Однако мы все-таки напомним их по той же самой причине, по которой даже в солидные академические словари иностранных слов помещают вполне понятные обиходные слова.

«Волна» — одно из самых необходимых слов физики.

Каждый представляет ее себе по-разному: один сразу же видит волны от брошенного в пруд камня, другой — синусоиду. Поскольку синусоиду рисовать проще — воспользуемся ею. У этой схематической волны четыре свойства: амплитуда А, длина волны — λ, частота ν и скорость распространения v.

Амплитуда волны — это наибольшая ее высота. Что такое длина волны — понятно из рисунка. А скорость распространения, по-видимому, особых пояснений не требует. Чтобы выяснить, что такое частота, проследим за движением волны в течение одной секунды.

За это время она пройдет расстояние v сантиметров (то есть ее скорость равна v см/сек). Подсчитав, сколько длин волн уместилось на этом отрезке, мы найдем частоту волны (или излучения): ν = v/λ.

Важнейшее свойство волн — их способность интерферировать. В чем его суть?

Допустите такую возможность: вы с силой бросаете горох в стену так, что он довольно далеко от нее отскакивает. Пусть вам удалось бросать его равномерно, скажем, так, чтобы на один квадратный сантиметр стены в 1 сек. попадало 8 горошин. Теперь мысленно в любом месте между вами и стеной выберите площадку в 1 см2 и сосчитайте число горошин, пролетающих через нее в обе стороны. Ясно, что оно всегда будет равно 16.

А что будет, если от стены отразится волна?

Рассмотрим внимательно рисунок на следующей странице: вначале волна беспрепятственно распространяется вправо (А); затем она достигает стены и отражается (Б); но мы увидим не две отдельные волны, а результат сложения обеих волн: прямой и отраженной. Результат зависит от того, как волна соприкоснулась со стеной (В). Иногда она падает так неудачно, что полностью сама себя гасит (Г, Д). Именно такая способность волны гасить саму себя называется интерференцией. По этому признаку волну всегда можно безошибочно отличить от потока частиц.

Длины волн

Еще одно свойство волны, которое отличает ее от частиц, — дифракция, или, говоря попросту, способность волны загибать за угол, к чему частица явно не способна. (Отметим только, что размеры препятствия должны быть сравнимы с длиной волны. И еще: если препятствие невелико, то благодаря дифракции волна может разделиться на две, обойти его с двух сторон и, складываясь снова, погасить себя точно так же, как при сложении прямой и отраженной волны.)

Именно таким способом, обнаружив интерференцию и дифракцию у рентгеновского и других видов излучения, установили, что все они волны, только разной длины. Длина волны излучения и есть тот основной признак, по которому мы различаем виды электромагнитного излучения количественно.

Наибольшая длина у радиоволн: от нескольких километров до нескольких сантиметров.

У тепловых лучей она короче — от 1 см до 10-2см.

Еще короче волны видимого света, примерно 4 105 — 8 • 10-5 см.

Самые короткие волны у рентгеновых лучей — 10-7-10-9 см.

Все эти виды излучения распространяются с одной и той же скоростью — со скоростью света с = 3 1010 см/сек.

Отсюда по формуле ν = c/λ очень просто вычислить частоту каждого вида излучения. Очевидно, для рентгеновых лучей она будет наибольшей, а для радиоволн — наименьшей.

Очень важно отдавать себе отчет в том, что, конечно, любое излучение — это не синусоида, изображенная на рисунке, а физический процесс, основные характеристики которого (например, периодичность), по счастью, можно выразить на языке таких простых моделей.

У каждого вида излучения свои особенности. Сосредоточимся пока на том его виде, который для нас наиболее важен и привычен, — на солнечном излучении. А поскольку оно подчиняется тем же законам, что и любой вид излучения, то в дальнейшем это поможет нам понять законы теплового излучения, которое оказалось столь важным в истории квантовой механики.

Когда вы греетесь на солнце, вы, наверное, не задумываетесь над тем, из каких волн состоят его лучи. Иногда, правда, вы спрашиваете себя, отчего в горах бывают солнечные ожоги и почему нельзя загореть вече-. ром. Исаак Ньютон (1643–1727) жил в Англии, где солнца не так уж много, но все-таки он задумался над тем, Из Чего состоит солнечный свет. Вслед за пражским профессором медицины Маркусом Марци он поставил опыт, знакомый теперь каждому школьнику. Пропустив j луч солнца сквозь призму, он обнаружил за ней на стене радугу — спектр солнечного луча.

Каждому цвету радуги-спектра соответствует своя волна солнечного излучения: самая длинная у красного цвета — 7 10-5 см; у зеленого — 5 • 10-5; у фиолетового — 4 • 10-5. Кроме видимых лучей, в солнечном спектре есть, конечно, и другие, в частности инфракрасные лучи (их длины волн еще больше, чем у красных) и ультрафиолетовые (их волны короче фиолетовых). Следовательно, частота ультрафиолетовых лучей наибольшая, а инфракрасных — наименьшая.

Относительная яркость различных цветов в спектре излучения неодинакова и зависит от температуры излучающего тела: например, в солнечном излучении больше всего желтых лучей. Таким образом, спектр любого излучения показывает, во-первых, какие лучи в нем есть и, во-вторых, сколько их там.

Проходя через атмосферу Земли, солнечный луч изменяет свой спектральный состав, потому что разные лучи солнечного спектра поглощаются атмосферой неодинаково, в частности сильнее всего ультрафиолетовые лучи. На горе слой воздуха меньше, доля ультрафиолетовых лучей больше, и потому обгореть там можно быстрее, чем в долине.

И хотя сам по себе этот факт хорошо известен, мы все-таки напомнили эту важную для дальнейшего деталь: причина солнечных ожогов — ультрафиолетовые лучи, именно они, а не зеленые или красные. Но чтобы обжечь, нужно, во всяком случае, затратить какую-то энергию. Следовательно, наибольшую энергию несут с собой волны наибольшей частоты — ультрафиолетовые, а не инфракрасные (хотя именно они и называются тепловыми). Это очень важный результат.

Итак, всякое тело состоит из атомов, которые мы пока представляем себе как шарики диаметром 10-8 см и разного веса: от 10-24 до 20-22 г. Они очень быстро движутся, колеблются и сталкиваются между собой, причем скорость их движения увеличивается с ростом температуры тела. Это тепловое движение атомов приводит к совершенно новому явлению: к тепловому излучению, свойства которого нам пока неизвестны.

Чтобы узнать их, возвратимся к железному лому, который греется в печи. Чем горячее печь, тем больше тепла излучает лом. Конечно, этот факт знали всегда, но только Джозеф Стефан (1835–1893) в 1879 году эмпирически и Людвиг Эдуард Больцман (1844–1906) в 1884 году теоретически установили количественный закон. Оказалось, что с повышением температуры общее количество излучаемого тепла растет очень быстро — как четвертая степень абсолютной температуры тела.

1 2 3 4 5 6 7 8 9 10 ... 57
Перейти на страницу:
Тут вы можете бесплатно читать книгу По ту сторону кванта - Леонид Пономарев.
Комментарии