Категории
Самые читаемые
PochitayKnigi » Научные и научно-популярные книги » Прочая научная литература » 200 занимательных логических задач - Дмитрий Гусев

200 занимательных логических задач - Дмитрий Гусев

Читать онлайн 200 занимательных логических задач - Дмитрий Гусев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 ... 17
Перейти на страницу:

60. Годовщина Октябрьской революции по старому стилю попадает на 25 октября, а по новому стилю – на 7 ноября. Таким образом, все события по старому стилю на 13 дней предшествуют тем же самым событиям по новому стилю. Значит, если по новому стилю Новый год приходится на 1 января, то по старому стилю он должен попадать на 19 декабря. Почему же мы тогда отмечаем старый Новый год 14 января?

61. Из спичек построено изображение рюмки, наполненной вином. Как переставить две спички таким образом, чтобы получившийся рисунок обозначал выплескивание вина из рюмки, т. е. после перестановки оно должно быть вне рюмки.

62. Как расположить шесть папирос так, чтобы каждая из них соприкасалась с пятью остальными?

63. Перед вами стоят три человека. Один из них Правдолюб (говорит всегда правду), другой Лжец (всегда лжет), а третий Дипломат (то говорит правду, то лжет). Вы не знаете, кто есть кто и задаете вопрос человеку, который стоит слева:

– Кто стоит рядом с тобой?

– Правдолюб, – отвечает он.

Потом вы спрашиваете человека стоящего в центре:

– Кто ты?

– Дипломат, – отвечает тот.

И, наконец, вы спрашиваете человека, который стоит справа:

– Кто стоит рядом с тобой?

– Лжец, – отвечает он.

Кто же стоит слева, кто – справа, кто – в центре?

64. Существует простой и дешевый способ путешествовать, которым, как то ни удивительно, никто не пользуется. Как известно, Земля вращается вокруг своей оси, причем достаточно быстро (всего за 24 часа каждая точка земного экватора проходит приблизительно 40 000 км – путь равный длине экватора). Значит, вместо того, чтобы куда-то ехать на поезде или лететь на самолете, или плыть на корабле, нам достаточно подняться высоко над землей на воздушном шаре или дирижабле и какое-то время там неподвижно находиться. За это время Земля повернется к нам другой частью своей поверхности и надо будет всего лишь спуститься в нужное место. Верно ли это рассуждение? Если нет, то какая ошибка в нем допущена?

65. В десятилитровом ведре находится 10 литров вина. В вашем распоряжении два пустых ведра: одно – 7 л, а другое – 3 л. Как с помощью этих ведер, путем переливаний, разделить 10 литров вина на две одинаковые части по 5 лит ров?

66. У Андрея часы отстают на 10 минут, но он думает, что они на 5 минут спешат. Он договорился с Катей встретиться в 18 часов в условленном месте. У Кати часы на 5 минут спешат, но она думает, что они отстают на 10 минут. Кто из них первым придет к назначенному месту свидания?

67. Попугай, которому 110 лет, спросил старого крокодила: «Сколько тебе лет?» Крокодил, привыкший выражаться сложно и запутанно, ответил: «Мне сейчас в 10 раз больше лет, чем было тебе тогда, когда мне было столько же лет, сколько тебе сейчас». Сколько лет крокодилу?

68. Начав плавание от берега круглого водоема, весельная лодка прошла строго на север 30 км, и достигла берега. Потом она повернула на восток и прошла неизменным курсом еще 40 км до очередной встречи с берегом. Каков диаметр данного водоема?

69. Возможно ли вскипятить воду на открытом пламени в бумажной коробке?

70. Вдоль стен квадратного бастиона комендант расположил 16 часовых по пять человек с каждой стороны (см. рисунок). После этого пришел полковник и, недовольный расположением часовых, приказал расставить их так, чтобы с каждой стороны их было по шесть. Затем пришел генерал и распорядился разместить часовых по семь человек с каждой стороны. Каким было расположение часовых в последних двух случаях?

71. Заяц, убегая от волка, пытается пробраться в пункт В. Уходя от погони, он петляет, двигаясь из А в В по кривой А С D В по дугам малых окружностей так, как это показано стрелками на рисунке. Преследующий его волк начал движение из пункта А мгновением позже и, надеясь настичь зайца в пункте В, движется по дуге большой окружности. Догонит ли он зайца в пункте В, если их скорости совершенно одинаковы?

72. На какие три числа (не считая единицу) делятся без остатка следующие числа: 1110, 999, 888, 777, 666, 555, 444, 333, 222, 111?

73. Кате вдвое больше лет, чем будет Насте тогда, когда Оле исполнится столько лет, сколько сейчас Кате. Кто из них старше, а кто младше?

74. В одном классе ученики разделились на две группы. Одни должны были всегда говорить только правду, а другие – только неправду. Все ученики класса написали сочинение на свободную тему, которое должно было заканчиваться фразой: «Все, здесь написанное, правда» или «Все, здесь написанное, ложь». В классе было 17 правдолюбцев и 18 лжецов. Сколько получилось сочинений с утверждением о правдивости написанного?

75. Сколько всего прапрадедушек и прапрабабушек было у всех ваших прапрадедушек и прапрабабушек?

76. На столе лежит в разложенном виде носовой платок. На нем в центре стоит горлышком вниз пустая стеклянная бутылка. Как вытянуть платок из-под бутылки, не прикасаясь к ней?

77. 5 + 5 + 5 = 550

В левой части равенства надо поставить только одну черточку или палочку для того, чтобы равенство получилось истинным.

78. Докажем, что три раза по два будет не шесть, а четыре. Возьмем спичку, сломаем ее пополам. Это один раз два. Потом возьмем половинку и сломаем ее пополам. Это второй раз два. Затем возьмем оставшуюся половинку и ее тоже сломаем пополам. Это третий раз два. Получилось четыре. Следовательно, три раза по два будет четыре, а не шесть. Найдите ошибку в этом рассуждении.

79. Как соединить девять точек между собой четырьмя линиями, не отрывая карандаша от бумаги?

80. В магазине хозяйственных товаров покупатель спросил:

– Сколько стоит один?

– Двадцать рублей, – ответил продавец.

– Сколько стоит двенадцать?

– Сорок рублей.

– Хорошо, дайте мне сто двенадцать.

– Пожалуйста, с вас шестьдесят рублей.

Что покупал посетитель?

81. Если в двенадцать часов ночи идет дождь, то можно ли ожидать, что через 72 часа будет солнечная погода?

82. Три человека заплатили за обед 30 рублей (каждый по 10). После их ухода хозяйка обнаружила, что обед стоит не 30, а 25 рублей и отправила мальчика с 5 рублями вдогонку. Каждый из путников взял себе по рублю, а 2 рубля они оставили мальчику. Выходит, что каждый из них заплатил не по 10, а по 9 рублей. Их было трое: 9 × 3 =27, и еще два рубля у мальчика: 27 + 2 = 29. Куда делся рубль?

83. В бассейн площадью 1 Га налили 1 000 000 литров воды. Можно ли плавать в таком бассейне?

84. Что больше: квадратный корень из двух или кубический корень из трех?

85. У одного мальчика не хватает до стоимости линейки 24 коп., а у другого не хватает до этой стоимости 2 коп. Когда они сложили свои деньги вместе, то все равно не смогли купить линейку. Сколько стоит линейка?

86. В одном парламенте депутаты разделились на консерваторов и либералов. Консерваторы говорили только правду по четным числам, а по нечетным они говорили только неправду. Либералы, наоборот, говорили только правду по нечетным числам, а по четным числам они говорили только неправду. Каким образом с помощью одного вопроса, заданного любому депутату, можно точно установить, какое сегодня число: четное или нечетное? Ответы должны быть определенными: «да» или «нет».

87. Бутылка с пробкой стоит 1 руб. 10 коп. Бутылка дороже пробки на рубль. Сколько стоит бутылка и сколько стоит пробка?

88. Возраст человека в 1998 году оказался равным сумме цифр года его рождения. Сколько ему лет?

89. Катя живет на четвертом этаже, а Оля – на втором. Поднимаясь на четвертый этаж, Катя преодолевает 60 ступенек. Сколько ступенек надо пройти Оле, чтобы подняться на второй этаж?

90. Математик написал на листке двузначное число. Когда он перевернул листок вверх ногами, число уменьшилось на 75. Какое число было написано?

91. У Саши три брата. Один старше на 3 года, второй на 3 года младше, третий моложе Саши втрое, а отец втрое старше Саши. Всем им вместе 95 лет. Сколько лет каждому из них?

92. Прямоугольный лист бумаги сложили пополам шесть раз. На сложенном листе сделали 2 дырки. Сколько дырок будет на листе, если его развернуть? (Дырки сделаны не на сгибах).

93. В пустую стеклянную бутылку напустили дыма. Как вытряхнуть или вывести дым из бутылки, не наливая в нее воду или какую-нибудь другую жидкость?

94. Корзинка с фруктами весит 11 кг. Фрукты тяжелее корзинки на 10 кг. Сколько весит корзинка, и сколько весят фрукты?

95. Кусок бумаги имеет форму прямоугольника, одна сторона которого равна 4, а другая 9 единицам длины. Как разрезать этот прямоугольник на две равные части, таким образом, чтобы, сложив их, получить квадрат?

1 2 3 4 5 6 7 8 9 10 ... 17
Перейти на страницу:
Тут вы можете бесплатно читать книгу 200 занимательных логических задач - Дмитрий Гусев.
Комментарии